BERRY-ESSEEN BOUNDS FOR PROJECTIONS OF COORDINATE SYMMETRIC RANDOM VECTORS

被引:4
|
作者
Goldstein, Larry [1 ]
Shao, Qi-Man [2 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Normal approximation; convex bodies; CENTRAL LIMIT PROBLEM;
D O I
10.1214/ECP.v14-1502
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a coordinate symmetric random vector (Y-1, ... , Y-n) = Y is an element of R-n, that is, one satisfying (Y-1, ... ,Y-n) =(d) (e(1)Y(1), ... , e(n)Y(n)) for all (e(1), ... , e(n)) is an element of {-1,1}(n), for which P(Y-i = 0) = 0 for all i = 1,2, ... , n, the following Berry Esseen bound to the cumulative standard normal Phi for the standardized projection W-theta = Y-theta/nu(theta) of Y holds: sup(x is an element of R) vertical bar P(W-theta <= x) - Phi(x) vertical bar <= 2 Sigma(n)(i=1)vertical bar theta(i)vertical bar E-3 vertical bar X-i vertical bar(3) + 8.4E(V-theta(2) - 1)(2), where Y-theta = theta . Y is the projection of Y in direction theta is an element of R-n with parallel to theta parallel to = 1, nu(theta) = root Var(Y-theta), X-i = vertical bar Y-i vertical bar/nu(theta) and V-theta = Sigma(n)(i=1) theta X-2(i)i(2). As such coordinate symmetry arises in the study of projections of vectors chosen uniformly from the surface of convex bodies which have symmetries with respect to the coordinate planes, the main result is applied to a class of coordinate symmetric vectors which includes cone measure l(p)(n) on the l(p)(n) sphere as a special case, resulting in a bound of order Sigma(n)(i=1) vertical bar theta(i)vertical bar(3).
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [31] ON THE BERRY-ESSEEN THEOREM FOR RANDOM U-STATISTICS
    AHMAD, IA
    [J]. ANNALS OF STATISTICS, 1980, 8 (06): : 1395 - 1398
  • [32] THE APPLICATION OF BERRY-ESSEEN THEOREMS FOR A RANDOM NUMBER OF OBSERVATIONS
    GEERTSEMA, JC
    [J]. SOUTH AFRICAN STATISTICAL JOURNAL, 1983, 17 (02) : 181 - 181
  • [33] Berry-Esseen bounds for compound-Poisson loss percentiles
    Feng, Frank Y.
    Powers, Michael R.
    Xiao, Rui'an
    Zhao, Lin
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2017, (06) : 519 - 534
  • [34] Berry-Esseen type bounds for trimmed U-statistics
    Borovskikh, Yuri V.
    Weber, N. C.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (04) : 1059 - 1071
  • [35] The Berry-Esseen bounds of the weighted estimator in a nonparametric regression model
    Wang, Xuejun
    Wu, Yi
    Hu, Shuhe
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (05) : 1143 - 1162
  • [36] A BERRY-ESSEEN THEOREM FOR ASSOCIATED RANDOM-VARIABLES
    WOOD, TE
    [J]. ANNALS OF PROBABILITY, 1983, 11 (04): : 1042 - 1047
  • [37] BERRY-ESSEEN BOUNDS FOR ERROR VARIANCE ESTIMATES IN LINEAR MODELS
    陈希孺
    [J]. Science China Mathematics, 1981, (07) : 899 - 913
  • [38] Nonuniform Berry-Esseen bounds for studentized U-statistics
    Leung, Dennis
    Shao, Qi-Man
    [J]. BERNOULLI, 2024, 30 (04) : 3276 - 3302
  • [39] Berry-esseen bounds for von mises and U-statistics
    Alberink I.B.
    Bentkus V.
    [J]. Lithuanian Mathematical Journal, 2001, 41 (1) : 1 - 16
  • [40] Asymptotic distributions and Berry-Esseen bounds for sums of record values
    Shao, QM
    Su, C
    Wei, G
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 : 544 - 559