Asymptotic distributions and Berry-Esseen bounds for sums of record values

被引:0
|
作者
Shao, QM [1 ]
Su, C
Wei, G
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Natl Univ Singapore, Dept Math, Dept Stat & Appl Probabil, Singapore 117543, Singapore
[3] Univ Sci & Technol China, Hefei 230026, Peoples R China
[4] Hong Kong Baptist Univ, Hong Kong, Hong Kong, Peoples R China
来源
关键词
central limit theorem; Berry-Esseen bounds; sum of records; insurance risk;
D O I
10.1214/EJP.v9-210
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {U-n, n greater than or equal to 1} be independent uniformly distributed random variables, and {Y-n, n greater than or equal to 1} be independent and identically distributed non-negative random variables with finite third moments. Denote S-n = Sigma(i=1)(n) Y-i and assume that (U-1,...,U-n) and Sn+1, are independent for every fixed n. In this paper we obtain Berry-Esseen bounds for Sigma(i=1)(n)(UiSn+1), where psi is a non-negative function. As an application, we give Berry-Esseen bounds and asymptotic distributions for sums of record values.
引用
收藏
页码:544 / 559
页数:16
相关论文
共 50 条
  • [1] Berry-Esseen bounds for typical weighted sums
    Bobkov, S. G.
    Chistyakov, G. P.
    Goetze, F.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [2] On Berry-Esseen bounds of summability transforms
    Fridy, JA
    Goonatilake, RA
    Khan, MK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) : 273 - 282
  • [3] THE ASYMPTOTIC BERRY-ESSEEN CONSTANT FOR INTERVALS
    Dinev, T.
    Mattner, L.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2013, 57 (02) : 323 - U219
  • [4] Berry-Esseen Bounds and Diophantine Approximation
    Berkes, I.
    Borda, B.
    [J]. ANALYSIS MATHEMATICA, 2018, 44 (02) : 149 - 161
  • [5] Berry-Esseen type estimates for nonconventional sums
    Hafouta, Yeor
    Kifer, Yuri
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) : 2430 - 2464
  • [6] On Berry-Esseen type bounds and asymptotic expansions for slightly trimmed means
    Gribkova N.V.
    [J]. Vestnik St. Petersburg University: Mathematics, 2013, 46 (3) : 129 - 142
  • [7] A NOTE ON THE BERRY-ESSEEN BOUNDS FOR ρ-MIXING
    Lu, C.
    Yu, W.
    Ji, R. L.
    Zhou, H. L.
    Wang, X. J.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 415 - 433
  • [8] Berry-Esseen bounds for estimating undirected graphs
    Wasserman, Larry
    Kolar, Mladen
    Rinaldo, Alessandro
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1188 - 1224
  • [9] Anticoncentration and Berry-Esseen bounds for random tensors
    Dodos, Pandelis
    Tyros, Konstantinos
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (1-2) : 317 - 384
  • [10] Berry-Esseen bounds for self-normalized sums of locally dependent random variables
    Zhang, Zhuo-Song
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (11) : 2629 - 2652