Ultra-lightweight Malware Detection of Android Using 2-level Machine Learning

被引:3
|
作者
Ma, Li [1 ]
Wang, Xiaolei [1 ]
Yang, Yuexiang [1 ]
He, Jie [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
[2] Officers Coll PAP, Chengdu, Peoples R China
关键词
2-level machine learning; SVM; ultra-lightweight; Android; smart-phone malware detection;
D O I
10.1109/ICISCE.2016.161
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As Android becoming the most popular smart phone operating system, malicious applications running on the Android platform appears very frequently and poses the major threat to the security of Android. Considering the resources of smart phone are severely limited, a stable, simple and quick malware detection method for Android is indispensable. In this paper, we propose an ultra-lightweight malware detection method which is able to detect unknown malicious Android applications with limited resources. Firstly, a few features are extracted and divided into three sets for every application. Then, these three feature sets are embedded in the corresponding joint vector spaces and we can get apps's feature vectors. After that, feature vectors of every vector space are classified using a machine learning algorithm. Finally, the three classification results are considered as a group and embedded in a new space and classified again. We evaluate our detection with 3427 malicious samples and 1550 benign applications. Experimental results show that our detection approach has a stable performance that the detection accuracy (true-positive rate) is always higher than 98% and the detection procedure costs only 30ms per sample.
引用
收藏
页码:729 / 733
页数:5
相关论文
共 50 条
  • [11] FEdroid: a lightweight and interpretable machine learning-based android malware detection system
    Huang, Hong
    Huang, Weitao
    Zhou, Yinghang
    Luo, Wengang
    Wang, Yunfei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [12] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [13] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [14] Android Malware Detection Using Hybrid Analysis and Machine Learning Technique
    Yang, Fan
    Zhuang, Yi
    Wang, Jun
    CLOUD COMPUTING AND SECURITY, PT II, 2017, 10603 : 565 - 575
  • [15] Poster: Android Malware Detection using Hybrid Features and Machine Learning
    Kadir, Abdul
    Peddoju, Sateesh K.
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 494 - 495
  • [16] Malware Detection in Android Mobile Platform using Machine Learning Algorithms
    Al Ali, Mariam
    Svetinovic, Davor
    Aung, Zeyar
    Lukman, Suryani
    2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS), 2017, : 763 - 768
  • [17] Efficient and Effective Static Android Malware Detection Using Machine Learning
    Bansal, Vidhi
    Ghosh, Mohona
    Baliyan, Niyati
    INFORMATION SYSTEMS SECURITY, ICISS 2022, 2022, 13784 : 103 - 118
  • [18] Permissions-Based Detection of Android Malware Using Machine Learning
    Akbar, Fahad
    Hussain, Mehdi
    Mumtaz, Rafia
    Riaz, Qaiser
    Wahab, Ainuddin Wahid Abdul
    Jung, Ki-Hyun
    SYMMETRY-BASEL, 2022, 14 (04):
  • [19] Malware Detection on Android Smartphones using API Class and Machine Learning
    Westyarian
    Rosmansyah, Yusep
    Dabarsyah, Budiman
    5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015, 2015, : 294 - 297
  • [20] A Survey on Android Malware Detection Techniques Using Machine Learning Algorithms
    Alqahtani, Ebtesam J.
    Zagrouba, Rachid
    Almuhaideb, Abdullah
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOFTWARE DEFINED SYSTEMS (SDS), 2019, : 110 - 117