Bifurcations and dynamical evolution of eigenvalues of Hamiltonian systems

被引:2
|
作者
Hsiao, FY [1 ]
Scheeres, DJ
机构
[1] Tamkang Univ, Dept Aerosp Engn, Tamsui 251, Taiwan
[2] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
美国国家航空航天局;
关键词
bifurcation; evolution of eigenvalues; transient stability; Hamiltonian system; Krein signature;
D O I
10.1016/j.physd.2005.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transient behavior of the eigenvalues of a state transition matrix in a Hamiltonian system is investigated. Mathematical tools are developed to derive the necessary and sufficient conditions for bifurcations of eigenvalues off and onto the unit circle. The transient behavior of eigenvalues is quantified and the mechanism by which instability transitions occur is identified. This work can be seen as a generalization of the Krein Signature. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 75
页数:10
相关论文
共 50 条
  • [31] Bifurcations from relative equilibria of Hamiltonian systems
    Roberts, RM
    Dias, MERD
    NONLINEARITY, 1997, 10 (06) : 1719 - 1738
  • [32] The evolution of invariant manifolds in Hamiltonian-Hopf bifurcations
    McSwiggen, PD
    Meyer, KR
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (02) : 538 - 555
  • [33] Bifurcations of planar Hamiltonian systems with impulsive perturbation
    Hu, Zhaoping
    Han, Maoan
    Romanovski, Valery G.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) : 6733 - 6742
  • [34] INVERSE FEIGENBAUM BIFURCATIONS IN HAMILTONIAN-SYSTEMS
    CONTOPOULOS, G
    LETTERE AL NUOVO CIMENTO, 1983, 37 (04): : 149 - 155
  • [35] The symmetry groups of bifurcations of integrable Hamiltonian systems
    Orlova, E. I.
    SBORNIK MATHEMATICS, 2014, 205 (11) : 1668 - 1682
  • [36] Hidden Bifurcations and Attractors in Nonsmooth Dynamical Systems
    Jeffrey, Mike R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04):
  • [37] Computer proofs for bifurcations of planar dynamical systems
    Guckenheimer, J
    COMPUTATIONAL DIFFERENTIATION: TECHNIQUES, APPLICATIONS, AND TOOLS, 1996, : 229 - 237
  • [38] Analysis of discontinuous bifurcations in nonsmooth dynamical systems
    Ivanov, Alexander P.
    REGULAR & CHAOTIC DYNAMICS, 2012, 17 (3-4): : 293 - 306
  • [39] Global bifurcations and chaos in polynomial dynamical systems
    Gaiko, VA
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 670 - 674
  • [40] Dynamics and bifurcations of fuzzy nonlinear dynamical systems
    Mizukoshi, M. T.
    Cecconello, M. S.
    FUZZY SETS AND SYSTEMS, 2017, 319 : 81 - 92