Dynamics and bifurcations of fuzzy nonlinear dynamical systems

被引:1
|
作者
Mizukoshi, M. T. [1 ]
Cecconello, M. S. [2 ]
机构
[1] IME UFG, Campus Samambaia,CP 131, BR-74690970 Goiania, Go, Brazil
[2] DMAT ICET UFMT, BR-78075202 Cuiaba, MT, Brazil
关键词
Bifurcation values; Zadeh extension principle; Asymptotic behavior; Topological equivalence; DIFFERENTIAL-EQUATIONS; STABILITY;
D O I
10.1016/j.fss.2016.11.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article presents a study on how changes in fuzzy parameters can affect the behavior of fuzzy solutions. Such fuzzy solutions are obtained by applying the Zadeh extension principle on deterministic solutions of autonomous differential equations. We define the concepts of topological equivalence and fuzzy bifurcation value for fuzzy flows. Using these notions, we prove some results for the existence of such bifurcation values. We also provide some examples and computational simulations to illustrate the results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条
  • [1] Gap bifurcations in nonlinear dynamical systems
    Rizzato, FB
    Pakter, R
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (18)
  • [2] Probabilistic Analysis of Bifurcations in Stochastic Nonlinear Dynamical Systems
    Mirzakhalili, Ehsan
    Epureanu, Bogdan I.
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (08):
  • [3] Bifurcations and Chaos in Nonlinear Dynamics of Power Systems
    Vahdati, Pouya Mahdavipour
    Kazemi, Ahad
    [J]. 2016 24TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2016, : 1706 - 1711
  • [4] Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems
    Neiman, A
    Saparin, PI
    Stone, L
    [J]. PHYSICAL REVIEW E, 1997, 56 (01): : 270 - 273
  • [5] A reflection on nonlinear oscillations, dynamical systems, and bifurcations of vector fields
    Virgin, L. N.
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2006, 1 (04): : 277 - 278
  • [6] Response analysis of fuzzy nonlinear dynamical systems
    Ling Hong
    Jun Jiang
    Jian-Qiao Sun
    [J]. Nonlinear Dynamics, 2014, 78 : 1221 - 1232
  • [7] Adaptive fuzzy modeling of nonlinear dynamical systems
    Tan, SH
    Yu, Y
    [J]. AUTOMATICA, 1996, 32 (04) : 637 - 643
  • [8] Fuzzy chaos generators for nonlinear dynamical systems
    Zhong, L
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 429 - 433
  • [9] Response analysis of fuzzy nonlinear dynamical systems
    Hong, Ling
    Jiang, Jun
    Sun, Jian-Qiao
    [J]. NONLINEAR DYNAMICS, 2014, 78 (02) : 1221 - 1232
  • [10] Codimension two bifurcations of nonlinear systems driven by fuzzy noise
    Hong, L
    Sun, JQ
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (02) : 181 - 189