Noncommutative optimal control and quantum networks

被引:5
|
作者
Yanagisawa, M [1 ]
机构
[1] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevA.73.022342
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal control is formulated based on a noncommutative calculus of operator derivatives. The use of optimal control methods in the design of quantum systems relies on the differentiation of an operator-valued function with respect to the relevant operator. Noncommutativity between the operator and its derivative leads to a generalization of the conventional method of control for classical systems. This formulation is applied to quantum networks of both spin and bosonic particles for the purpose of quantum state control via quantum random walks.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quantum optimal control of ozone isomerization
    Artamonov, M
    Ho, TS
    Rabitz, H
    CHEMICAL PHYSICS, 2004, 305 (1-3) : 213 - 222
  • [42] Optimal Control of Families of Quantum Gates
    Sauvage, Frederic
    Mintert, Florian
    PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [43] Chattering phenomenon in quantum optimal control
    Robin, R.
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    NEW JOURNAL OF PHYSICS, 2022, 24 (12):
  • [44] Optimal control in a quantum cooling problem
    Salamon, Peter
    Hoffmann, Karl Heinz
    Tsirlin, Anatoly
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1263 - 1266
  • [45] Optimal control methods for quantum batteries
    Mazzoncini, Francesco
    Cavina, Vasco
    Andolina, Gian Marcello
    Erdman, Paolo Andrea
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [46] QuOCS: The quantum optimal control suite
    Rossignolo, Marco
    Reisser, Thomas
    Marshall, Alastair
    Rembold, Phila
    Pagano, Alice
    Vetter, Philipp J.
    Said, Ressa S.
    Mueller, Matthias M.
    Motzoi, Felix
    Calarco, Tommaso
    Jelezko, Fedor
    Montangero, Simone
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 291
  • [47] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [48] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    Physical Review A, 2023, 108 (02):
  • [49] OPTIMAL-CONTROL OF QUANTUM OBJECTS
    HAO, DN
    AUTOMATION AND REMOTE CONTROL, 1986, 47 (02) : 162 - 168
  • [50] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    PHYSICAL REVIEW A, 2023, 108 (02)