Noncommutative optimal control and quantum networks

被引:5
|
作者
Yanagisawa, M [1 ]
机构
[1] CALTECH, Control & Dynam Syst, Pasadena, CA 91125 USA
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevA.73.022342
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal control is formulated based on a noncommutative calculus of operator derivatives. The use of optimal control methods in the design of quantum systems relies on the differentiation of an operator-valued function with respect to the relevant operator. Noncommutativity between the operator and its derivative leads to a generalization of the conventional method of control for classical systems. This formulation is applied to quantum networks of both spin and bosonic particles for the purpose of quantum state control via quantum random walks.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optimal quantum control via genetic algorithms for quantum state engineering in driven-resonator mediated networks
    Brown, Jonathon
    Paternostro, Mauro
    Ferraro, Alessandro
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (02)
  • [32] Noncommutative Networks on a Cylinder
    Arthamonov, S.
    Ovenhouse, N.
    Shapiro, M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (05)
  • [33] Robust quantum optimal control for Markovian quantum systems
    Liu, Ran
    Yang, Xiaodong
    Li, Jun
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [34] Optimal quantum cloning via spin networks
    Chen, Qing
    Cheng, Jianhua
    Wang, Ke-Lin
    Du, Jiangfeng
    PHYSICAL REVIEW A, 2006, 74 (03):
  • [35] Optimal control in disordered quantum systems
    Coopmans, Luuk
    Campbell, Steve
    De Chiara, Gabriele
    Kiely, Anthony
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [36] Optimal control landscapes for quantum observables
    Rabitz, Herschel
    Hsieh, Michael
    Rosenthal, Carey
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):
  • [37] Extending XACC for Quantum Optimal Control
    Nguyen, Thien
    Santana, Anthony
    McCaskey, Alexander
    IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 391 - 401
  • [38] Optimal Quantum Control by Composite Pulses
    Kyoseva, Elica
    Vitanov, Nikolay
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [39] Optimal control, geometry, and quantum computing
    Nielsen, Michael A.
    Dowling, Mark R.
    Gu, Mile
    Doherty, Andrew C.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [40] Quantum optimal control of HCN isomerization
    Artamonov, Maxim
    Ho, Tak-San
    Rabitz, Herschel
    CHEMICAL PHYSICS, 2006, 328 (1-3) : 147 - 155