Optimal control with a multidimensional quantum invariant

被引:0
|
作者
Orozco-Ruiz, Modesto [1 ]
Simsek, Selwyn [1 ]
Kulmiya, Sahra A. [2 ,3 ]
Hile, Samuel J. [2 ]
Hensinger, Winfried K. [2 ]
Mintert, Florian [1 ,4 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[2] Univ Sussex, Sussex Ctr Quantum Technol, Brighton BN1 9RH, E Sussex, England
[3] Univ Bristol, Quantum Engn Ctr Doctoral Training, Bristol BS8 1TH, Avon, England
[4] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
DEPENDENT HARMONIC-OSCILLATOR; CHARGED-PARTICLE;
D O I
10.1103/PhysRevA.108.022601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal quantum control of continuous variable systems poses a formidable computational challenge because of the high-dimensional character of the system dynamics. The framework of quantum invariants can significantly reduce the complexity of such problems, but it requires the knowledge of an invariant compatible with the Hamiltonian of the system in question. We explore the potential of a Gaussian invariant that is suitable for quadratic Hamiltonians with any given number of motional degrees of freedom for quantum optimal control problems that are inspired by current challenges in ground-state to ground-state shuttling of trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    Physical Review A, 2023, 108 (02):
  • [2] A multidimensional pseudospectral method for optimal control of quantum ensembles
    Ruths, Justin
    Li, Jr-Shin
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (04):
  • [3] GROUP-INVARIANT SOLUTIONS AND OPTIMAL SYSTEMS FOR MULTIDIMENSIONAL HYDRODYNAMICS
    COGGESHALL, SV
    MEYERTERVEHN, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) : 3585 - 3601
  • [4] Optimal quantum tomography of permutationally invariant qubits
    Klimov, A. B.
    Bjork, G.
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [5] Localization of Invariant Compacts in Multidimensional Systems with Phase Control
    Gribov, A. F.
    AUTOMATION AND REMOTE CONTROL, 2018, 79 (08) : 1390 - 1398
  • [6] Localization of Invariant Compacts in Multidimensional Systems with Phase Control
    A. F. Gribov
    Automation and Remote Control, 2018, 79 : 1390 - 1398
  • [7] An invariant second variation in optimal control
    Agrachev, A
    Stefani, G
    Zezza, P
    INTERNATIONAL JOURNAL OF CONTROL, 1998, 71 (05) : 689 - 715
  • [8] Multidimensional Fuzzy Optimal Control with Application to Optimal Stopping Time
    Wang, Beibei
    Zhu, Yuanguo
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2009, 8 : 560 - 566
  • [9] A differential operator approach to multidimensional optimal control
    Pommaret, JF
    Quadrat, A
    INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (09) : 821 - 836
  • [10] Optimal control and simulation of multidimensional crystallization processes
    Ma, DL
    Tafti, DK
    Braatz, RD
    COMPUTERS & CHEMICAL ENGINEERING, 2002, 26 (7-8) : 1103 - 1116