Optimal control with a multidimensional quantum invariant

被引:0
|
作者
Orozco-Ruiz, Modesto [1 ]
Simsek, Selwyn [1 ]
Kulmiya, Sahra A. [2 ,3 ]
Hile, Samuel J. [2 ]
Hensinger, Winfried K. [2 ]
Mintert, Florian [1 ,4 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[2] Univ Sussex, Sussex Ctr Quantum Technol, Brighton BN1 9RH, E Sussex, England
[3] Univ Bristol, Quantum Engn Ctr Doctoral Training, Bristol BS8 1TH, Avon, England
[4] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
DEPENDENT HARMONIC-OSCILLATOR; CHARGED-PARTICLE;
D O I
10.1103/PhysRevA.108.022601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal quantum control of continuous variable systems poses a formidable computational challenge because of the high-dimensional character of the system dynamics. The framework of quantum invariants can significantly reduce the complexity of such problems, but it requires the knowledge of an invariant compatible with the Hamiltonian of the system in question. We explore the potential of a Gaussian invariant that is suitable for quadratic Hamiltonians with any given number of motional degrees of freedom for quantum optimal control problems that are inspired by current challenges in ground-state to ground-state shuttling of trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Optimal control in disordered quantum systems
    Coopmans, Luuk
    Campbell, Steve
    De Chiara, Gabriele
    Kiely, Anthony
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [42] Optimal control landscapes for quantum observables
    Rabitz, Herschel
    Hsieh, Michael
    Rosenthal, Carey
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (20):
  • [43] Extending XACC for Quantum Optimal Control
    Nguyen, Thien
    Santana, Anthony
    McCaskey, Alexander
    IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE20), 2020, : 391 - 401
  • [44] Optimal Quantum Control by Composite Pulses
    Kyoseva, Elica
    Vitanov, Nikolay
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [45] Optimal control, geometry, and quantum computing
    Nielsen, Michael A.
    Dowling, Mark R.
    Gu, Mile
    Doherty, Andrew C.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [46] Quantum optimal control of HCN isomerization
    Artamonov, Maxim
    Ho, Tak-San
    Rabitz, Herschel
    CHEMICAL PHYSICS, 2006, 328 (1-3) : 147 - 155
  • [47] Quantum optimal control of ozone isomerization
    Artamonov, M
    Ho, TS
    Rabitz, H
    CHEMICAL PHYSICS, 2004, 305 (1-3) : 213 - 222
  • [48] Optimal Control of Families of Quantum Gates
    Sauvage, Frederic
    Mintert, Florian
    PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [49] Chattering phenomenon in quantum optimal control
    Robin, R.
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    NEW JOURNAL OF PHYSICS, 2022, 24 (12):
  • [50] Optimal control in a quantum cooling problem
    Salamon, Peter
    Hoffmann, Karl Heinz
    Tsirlin, Anatoly
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1263 - 1266