Optimal control with a multidimensional quantum invariant

被引:0
|
作者
Orozco-Ruiz, Modesto [1 ]
Simsek, Selwyn [1 ]
Kulmiya, Sahra A. [2 ,3 ]
Hile, Samuel J. [2 ]
Hensinger, Winfried K. [2 ]
Mintert, Florian [1 ,4 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[2] Univ Sussex, Sussex Ctr Quantum Technol, Brighton BN1 9RH, E Sussex, England
[3] Univ Bristol, Quantum Engn Ctr Doctoral Training, Bristol BS8 1TH, Avon, England
[4] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
DEPENDENT HARMONIC-OSCILLATOR; CHARGED-PARTICLE;
D O I
10.1103/PhysRevA.108.022601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optimal quantum control of continuous variable systems poses a formidable computational challenge because of the high-dimensional character of the system dynamics. The framework of quantum invariants can significantly reduce the complexity of such problems, but it requires the knowledge of an invariant compatible with the Hamiltonian of the system in question. We explore the potential of a Gaussian invariant that is suitable for quadratic Hamiltonians with any given number of motional degrees of freedom for quantum optimal control problems that are inspired by current challenges in ground-state to ground-state shuttling of trapped ions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optimal control for quantum detectors
    Paraj Titum
    Kevin Schultz
    Alireza Seif
    Gregory Quiroz
    B. D. Clader
    npj Quantum Information, 7
  • [22] Optimal control of a quantum measurement
    Egger, D. J.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [23] Optimal Quantum Control Theory
    James, M. R.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 : 343 - 367
  • [24] A quantum approach for optimal control
    Sandesara, Hirmay
    Shukla, Alok
    Vedula, Prakash
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [25] Optimal control of quantum revival
    Rasanen, Esa
    Heller, Eric J.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (01):
  • [26] Quantum optimal control theory
    Werschnik, J.
    Gross, E. K. U.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (18) : R175 - R211
  • [27] Optimal control of quantum revival
    Esa Räsänen
    Eric J. Heller
    The European Physical Journal B, 2013, 86
  • [28] Optimal control for quantum detectors
    Titum, Paraj
    Schultz, Kevin
    Seif, Alireza
    Quiroz, Gregory
    Clader, B. D.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [29] Optimal quantum control of charging quantum batteries
    Rodriguez, R. R.
    Ahmadi, B.
    Suarez, G.
    Mazurek, P.
    Barzanjeh, S.
    Horodecki, P.
    NEW JOURNAL OF PHYSICS, 2024, 26 (04):
  • [30] Optimal Hamiltonian identification: The synthesis of quantum optimal control and quantum inversion
    Geremia, JM
    Rabitz, H
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (12): : 5369 - 5382