PeakVI: A deep generative model for single-cell chromatin accessibility analysis

被引:17
|
作者
Ashuach, Tal [1 ]
Reidenbach, Daniel A. [2 ]
Gayoso, Adam [1 ]
Yosef, Nir [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Ragon Inst MGH MIT & Harvard, Cambridge, MA 02139 USA
[4] Chan Zuckerberg BioHub, San Francisco, CA 94158 USA
来源
CELL REPORTS METHODS | 2022年 / 2卷 / 03期
关键词
deep learning; single-cell ATAC-seq; single-cell chromatin accessibility; single-cell genomics;
D O I
10.1016/j.crmeth.2022.100182
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels, degree of sparsity, and scale of the generated data make its analysis challenging. Here, we present PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data. PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch effects and accounting for technical effects, such as library size and region-specific biases. In addition, PeakVI provides a technique for identifying differential accessibility at a single-region resolution, which can be used for cell-type annotation as well as identification of key cis-regulatory elements. We use public datasets to demonstrate that PeakVI is scalable, stable, robust to low-quality data, and outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available and implemented in the scvi-tools framework.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Single-cell colocalization analysis using a deep generative model
    Kojima, Yasuhiro
    Mii, Shinji
    Hayashi, Shuto
    Hirose, Haruka
    Ishikawa, Masato
    Akiyama, Masashi
    Enomoto, Atsushi
    Shimamura, Teppei
    CELL SYSTEMS, 2024, 15 (02) : 180 - 192.e7
  • [2] Destin: toolkit for single-cell analysis of chromatin accessibility
    Urrutia, Eugene
    Chen, Li
    Zhou, Haibo
    Jiang, Yuchao
    BIOINFORMATICS, 2019, 35 (19) : 3818 - 3820
  • [3] Single-cell analysis of chromatin accessibility in the adult mouse brain
    Songpeng Zu
    Yang Eric Li
    Kangli Wang
    Ethan J. Armand
    Sainath Mamde
    Maria Luisa Amaral
    Yuelai Wang
    Andre Chu
    Yang Xie
    Michael Miller
    Jie Xu
    Zhaoning Wang
    Kai Zhang
    Bojing Jia
    Xiaomeng Hou
    Lin Lin
    Qian Yang
    Seoyeon Lee
    Bin Li
    Samantha Kuan
    Hanqing Liu
    Jingtian Zhou
    Antonio Pinto-Duarte
    Jacinta Lucero
    Julia Osteen
    Michael Nunn
    Kimberly A. Smith
    Bosiljka Tasic
    Zizhen Yao
    Hongkui Zeng
    Zihan Wang
    Jingbo Shang
    M. Margarita Behrens
    Joseph R. Ecker
    Allen Wang
    Sebastian Preissl
    Bing Ren
    Nature, 2023, 624 : 378 - 389
  • [4] Single-cell analysis of chromatin accessibility in the adult mouse brain
    Zu, Songpeng
    Li, Yang Eric
    Wang, Kangli
    Armand, Ethan J.
    Mamde, Sainath
    Amaral, Maria Luisa
    Wang, Yuelai
    Chu, Andre
    Xie, Yang
    Miller, Michael
    Xu, Jie
    Wang, Zhaoning
    Zhang, Kai
    Jia, Bojing
    Hou, Xiaomeng
    Lin, Lin
    Yang, Qian
    Lee, Seoyeon
    Li, Bin
    Kuan, Samantha
    Liu, Hanqing
    Zhou, Jingtian
    Pinto-Duarte, Antonio
    Lucero, Jacinta
    Osteen, Julia
    Nunn, Michael
    Smith, Kimberly A.
    Tasic, Bosiljka
    Yao, Zizhen
    Zeng, Hongkui
    Wang, Zihan
    Shang, Jingbo
    Behrens, M. Margarita
    Ecker, Joseph R.
    Wang, Allen
    Preissl, Sebastian
    Ren, Bing
    NATURE, 2023, 624 (7991) : 378 - 389
  • [5] Spatially mapped single-cell chromatin accessibility
    Casey A. Thornton
    Ryan M. Mulqueen
    Kristof A. Torkenczy
    Andrew Nishida
    Eve G. Lowenstein
    Andrew J. Fields
    Frank J. Steemers
    Wenri Zhang
    Heather L. McConnell
    Randy L. Woltjer
    Anusha Mishra
    Kevin M. Wright
    Andrew C. Adey
    Nature Communications, 12
  • [6] Profiling Chromatin Accessibility at Single-cell Resolution
    Sarthak Sinha
    Ansuman T.Satpathy
    Weiqiang Zhou
    Hongkai Ji
    Jo A.Stratton
    Arzina Jaffer
    Nizar Bahlis
    Sorana Morrissy
    Jeff A.Biernaskie
    Genomics,Proteomics & Bioinformatics, 2021, 19 (02) : 172 - 190
  • [7] Profiling single-cell chromatin accessibility in plants
    Marand, Alexandre P.
    Zhang, Xuan
    Nelson, Julie
    dos Reis, Pedro Augusto Braga
    Schmitz, Robert J.
    STAR PROTOCOLS, 2021, 2 (03):
  • [8] Profiling Chromatin Accessibility at Single-cell Resolution
    Sinha, Sarthak
    Satpathy, Ansuman T.
    Zhou, Weiqiang
    Ji, Hongkai
    Stratton, Jo A.
    Jaffer, Arzina
    Bahlis, Nizar
    Morrissy, Sorana
    Biernaskie, Jeff A.
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (02) : 172 - 190
  • [9] Profiling Chromatin Accessibility at Single-cell Resolution
    Sarthak Sinha
    Ansuman TSatpathy
    Weiqiang Zhou
    Hongkai Ji
    Jo AStratton
    Arzina Jaffer
    Nizar Bahlis
    Sorana Morrissy
    Jeff ABiernaskie
    Genomics,Proteomics & Bioinformatics, 2021, (02) : 172 - 190
  • [10] Spatially mapped single-cell chromatin accessibility
    Thornton, Casey A.
    Mulqueen, Ryan M.
    Torkenczy, Kristof A.
    Nishida, Andrew
    Lowenstein, Eve G.
    Fields, Andrew J.
    Steemers, Frank J.
    Zhang, Wenri
    McConnell, Heather L.
    Woltjer, Randy L.
    Mishra, Anusha
    Wright, Kevin M.
    Adey, Andrew C.
    NATURE COMMUNICATIONS, 2021, 12 (01)