CMOS compatible polycrystalline silicon-germanium based pressure sensors

被引:14
|
作者
Gonzalez, Pilar [1 ,2 ]
Guo, Bin [1 ]
Rakowski, Michal [1 ]
De Meyer, Kristin [1 ,2 ]
Witvrouw, Ann [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, B-3001 Louvain, Belgium
关键词
Poly-SiGe; MEMS monolithic integration; Piezoresistivity; Capacitive; Pressure sensor; CMOS; POLY-SIGE; MEMS; TEMPERATURE; LAYERS; HF;
D O I
10.1016/j.sna.2011.12.018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates, for the first time, the use of poly-SiGe for the fabrication of both piezoresistive and capacitive pressure sensors at CMOS-compatible temperatures. Despite the low processing temperature (455 degrees C), a sensitivity of 4.6 mV/V/bar for a membrane of 200 x 200 mu m(2) is reached by piezoresistor design optimization. The possibility of further enhancing the sensor sensitivity by tuning the piezoresistor's annealing time is investigated, leading to a 30% improvement. Single capacitive pressure sensors with sensitivities up to 73 fF/bar have been successfully fabricated. Annealing tests, performed at a fixed temperature of 455 degrees C with different annealing times, prove that the presented pressure sensor process flows are compatible with post-processing above 0.13 mu m Cu-backend CMOS devices. The increase in metal-to-metal contacts (more than 8% after 6h annealing), rather than transistor performance or degradation of the metal interconnects, is what limits the post-processing thermal budget. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [21] SILICON-GERMANIUM HYDRIDES
    TIMMS, PL
    PHILLIPS, CS
    SIMPSON, CC
    JOURNAL OF THE CHEMICAL SOCIETY, 1964, (APR): : 1467 - &
  • [22] Aluminum-induced crystallization of polycrystalline silicon-germanium thin films
    Lin, Jian-Yang
    Chang, Pai-Yu
    International Journal of Electrical Engineering, 2010, 17 (06): : 367 - 372
  • [23] Silicon-germanium nanostructures
    Ray, SK
    Das, K
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2005, 58 (06) : 1203 - 1212
  • [24] Germanium/Silicon-Germanium Heterostructure Avalanche Photodiodes on Silicon
    Miyasaka, Y.
    Hiraki, T.
    Tsuchizawa, T.
    Wada, K.
    Ishikawa, Y.
    SIGE, GE, AND RELATED MATERIALS: MATERIALS, PROCESSING, AND DEVICES 7, 2016, 75 (08): : 185 - 191
  • [25] Silicon-Germanium Stressors for Germanium Photonic Devices on Silicon
    Nishimura, Michiharu
    Kawashita, Kazuki
    Ishikawa, Yasuhiko
    SIGE, GE, AND RELATED COMPOUNDS: MATERIALS, PROCESSING, AND DEVICES 8, 2018, 86 (07): : 3 - 10
  • [26] Germanium electrodeposition into porous silicon for silicon-germanium alloying
    Grevtsov, Nikita
    Chubenko, Eugene
    Bondarenko, Vitaly
    Gavrilin, Ilya
    Dronov, Alexey
    Gavrilov, Sergey
    MATERIALIA, 2022, 26
  • [27] Silicon-germanium and platinum silicide nanostructures for silicon based photonics
    Storozhevykh, M. S.
    Dubkov, V. P.
    Arapkina, L. V.
    Chizh, K. V.
    Mironov, S. A.
    Chapnin, V. A.
    Yuryev, V. A.
    NANOTECHNOLOGY VIII, 2017, 10248
  • [28] ELECTRICAL-PROPERTIES OF HEAVILY-DOPED POLYCRYSTALLINE SILICON-GERMANIUM FILMS
    KING, TJ
    MCVITTIE, JP
    SARASWAT, KC
    PFIESTER, JR
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (02) : 228 - 232
  • [29] Polycrystalline silicon-germanium heating layer for phase-change memory applications
    Lee, Seung-Yun
    Choi, Kyu-Jeong
    Ryu, Sang-Ouk
    Yoon, Sung-Min
    Lee, Nam-Yeal
    Park, Young-Sam
    Kim, Sang-Hoon
    Lee, Sang-Heung
    Yu, Byoung-Gon
    APPLIED PHYSICS LETTERS, 2006, 89 (05)
  • [30] Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications
    Low, Carrie W.
    Liu, Tsu-Jae King
    Howe, Roger T.
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (01) : 68 - 77