CMOS compatible polycrystalline silicon-germanium based pressure sensors

被引:14
|
作者
Gonzalez, Pilar [1 ,2 ]
Guo, Bin [1 ]
Rakowski, Michal [1 ]
De Meyer, Kristin [1 ,2 ]
Witvrouw, Ann [1 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, B-3001 Louvain, Belgium
关键词
Poly-SiGe; MEMS monolithic integration; Piezoresistivity; Capacitive; Pressure sensor; CMOS; POLY-SIGE; MEMS; TEMPERATURE; LAYERS; HF;
D O I
10.1016/j.sna.2011.12.018
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates, for the first time, the use of poly-SiGe for the fabrication of both piezoresistive and capacitive pressure sensors at CMOS-compatible temperatures. Despite the low processing temperature (455 degrees C), a sensitivity of 4.6 mV/V/bar for a membrane of 200 x 200 mu m(2) is reached by piezoresistor design optimization. The possibility of further enhancing the sensor sensitivity by tuning the piezoresistor's annealing time is investigated, leading to a 30% improvement. Single capacitive pressure sensors with sensitivities up to 73 fF/bar have been successfully fabricated. Annealing tests, performed at a fixed temperature of 455 degrees C with different annealing times, prove that the presented pressure sensor process flows are compatible with post-processing above 0.13 mu m Cu-backend CMOS devices. The increase in metal-to-metal contacts (more than 8% after 6h annealing), rather than transistor performance or degradation of the metal interconnects, is what limits the post-processing thermal budget. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [31] EVALUATION OF THE PIEZORESISTIVE AND ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SILICON-GERMANIUM FOR MEMS SENSOR APPLICATIONS
    Gonzalez, Pilar
    Haspeslagh, Luc
    De Meyer, Kristin
    Witvrouw, Ann
    MEMS 2010: 23RD IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2010, : 580 - 583
  • [32] Bondlengths and phase stability of Silicon-Germanium alloys under pressure
    Sluiter, MHF
    Kawazoe, Y
    MATERIALS TRANSACTIONS, 2001, 42 (11) : 2201 - 2205
  • [33] Characterization of silicon-germanium heterojunction bipolar transistors degradation in silicon-germanium BiCMOS technologies
    Lee, Seung-Yun
    Park, Chan Woo
    SOLID-STATE ELECTRONICS, 2006, 50 (03) : 333 - 339
  • [34] PHASE-TRANSITIONS IN SILICON-GERMANIUM ALLOYS UNDER PRESSURE
    QUEISSER, G
    GROSSHANS, WA
    HOLZAPFEL, WB
    EUROPHYSICS LETTERS, 1987, 3 (10): : 1109 - 1112
  • [35] Determination of the piezoresistivity of microcrystalline silicon-germanium and application to a pressure sensor
    Lenci, S.
    Gonzalez, P.
    De Meyer, K.
    Van Hoof, R.
    Frederickx, D.
    Witvrouw, A.
    MEMS 2008: 21ST IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, TECHNICAL DIGEST, 2008, : 427 - +
  • [36] Silicon-germanium microphotonic switches
    Li, BJ
    Zhao, YZ
    Li, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 : S19 - S23
  • [37] Germanium, Carbon-Germanium, and Silicon-Germanium Triangulenes
    Gapurenko, Olga A.
    Starikov, Andrey G.
    Minyaev, Ruslan M.
    Minkin, Vladimir I.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (29) : 2193 - 2199
  • [38] Silicon-germanium - a promise into the future?
    Grimmeiss, HG
    SEMICONDUCTORS, 1999, 33 (09) : 939 - 941
  • [39] Silicon-germanium—a promise into the future?
    H. G. Grimmeiss
    Semiconductors, 1999, 33 : 939 - 941