Big Data Visualisation and Visual Analytics for Music Data Mining

被引:27
|
作者
Barkwell, Katrina E. [1 ]
Cuzzocrea, Alfredo [2 ]
Leung, Carson K. [1 ]
Ocran, Ashley A. [1 ]
Sanderson, Jennifer M. [1 ]
Stewart, James Ayrton [1 ]
Wodi, Bryan H. [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[2] Univ Trieste, Dept Engn & Architecture DIA, Trieste, TS, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
big data; data visualisation; visual analytics; visualiser; frequent patterns; musical data; music data analytics; music data mining; ASSOCIATION RULES;
D O I
10.1109/iV.2018.00048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As high volumes of a wide variety of valuable data of different veracities can be easily generated or collected at a high velocity nowadays, big data visualisation and visual analytics are in demand in various real-life applications. Musical data are examples of big data. Embedded in these big data are useful information and valuable knowledge. Many existing big data mining algorithms return useful information and valuable knowledge in textual or tabular forms. Knowing that "a picture is worth a thousand words", big data visualisation and visual analytics are also in demand. In this paper, we present a system for visualising and analysing big data. In particular, our system focuses on the big data science task of the discovery and exploration of frequent patterns (i.e., collections of items that frequently occurring together) from musical data. Evaluation results show the applicability of our system in big data visualisation and visual analytics for music data mining.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 50 条
  • [11] Rethinking 'big data' as visual knowledge: the sublime and the diagrammatic in data visualisation
    McCosker, Anthony
    Wilken, Rowan
    [J]. VISUAL STUDIES, 2014, 29 (02) : 155 - 164
  • [12] Visual Context Learning with Big Data Analytics
    Chandrashekar, Mayanka
    Lee, Yugyung
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 600 - 607
  • [13] Visual Analytics for Big Data using R
    Nasridinov, Aziz
    Park, Young-Ho
    [J]. 2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING (CGC 2013), 2013, : 564 - 565
  • [14] A Visual Analytics Framework for Big Spatiotemporal Data
    Wang, Shaohua
    Zhong, Ershun
    Cai, Wenwen
    Zhou, Qiang
    Lu, Hao
    Gu, Yongquan
    Yun, Weiying
    Hu, Zhongnan
    Long, Liang
    [J]. PROCEEDINGS OF THE 2ND ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ANALYTICS FOR LOCAL EVENTS AND NEWS (LENS 2018), 2018,
  • [15] A Visual Programming Approach to Big Data Analytics
    Bockermann, Christian
    [J]. DESIGN, USER EXPERIENCE, AND USABILITY: USER EXPERIENCE DESIGN FOR DIVERSE INTERACTION PLATFORMS AND ENVIRONMENTS, PT II, 2014, 8518 : 393 - 404
  • [16] Big Data Exploration through Visual Analytics
    Abousalh-Neto, Nascif A.
    Kazgan, Sumeyye
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 285 - 286
  • [17] Big Data Visual Analytics with Parallel Coordinates
    Heinrich, Julian
    Broeksema, Bertjan
    [J]. 2015 BIG DATA VISUAL ANALYTICS (BDVA), 2015,
  • [18] Special issue on Big Data Visual Analytics
    Quang Vinh Nguyen
    Klein, Karsten
    Engelke, Ulrich
    Bednarz, Tomasz
    Heinrich, Julian
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2017, 41 : 70 - 70
  • [19] A Visual Data Science Solution for Visualization and Visual Analytics of Big Sequential Data
    Leung, Carson K.
    Wen, Yan
    Zhao, Chenru
    Zheng, Hao
    Jiang, Fan
    Cuzzocrea, Alfredo
    [J]. 2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 229 - 234
  • [20] A Big Data Analytics Framework for Supporting Multidimensional Mining over Big Healthcare Data
    Bochicchio, Mario
    Cuzzocrea, Alfredo
    Vaira, Lucia
    [J]. 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 508 - 513