Big Data Visualisation and Visual Analytics for Music Data Mining

被引:27
|
作者
Barkwell, Katrina E. [1 ]
Cuzzocrea, Alfredo [2 ]
Leung, Carson K. [1 ]
Ocran, Ashley A. [1 ]
Sanderson, Jennifer M. [1 ]
Stewart, James Ayrton [1 ]
Wodi, Bryan H. [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[2] Univ Trieste, Dept Engn & Architecture DIA, Trieste, TS, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
big data; data visualisation; visual analytics; visualiser; frequent patterns; musical data; music data analytics; music data mining; ASSOCIATION RULES;
D O I
10.1109/iV.2018.00048
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As high volumes of a wide variety of valuable data of different veracities can be easily generated or collected at a high velocity nowadays, big data visualisation and visual analytics are in demand in various real-life applications. Musical data are examples of big data. Embedded in these big data are useful information and valuable knowledge. Many existing big data mining algorithms return useful information and valuable knowledge in textual or tabular forms. Knowing that "a picture is worth a thousand words", big data visualisation and visual analytics are also in demand. In this paper, we present a system for visualising and analysing big data. In particular, our system focuses on the big data science task of the discovery and exploration of frequent patterns (i.e., collections of items that frequently occurring together) from musical data. Evaluation results show the applicability of our system in big data visualisation and visual analytics for music data mining.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 50 条
  • [31] Time Series Data Mining: A Case Study With Big Data Analytics Approach
    Wang, Fang
    Li, Menggang
    Mei, Yiduo
    Li, Wenrui
    [J]. IEEE ACCESS, 2020, 8 : 14322 - 14328
  • [32] Malware Analytics: Review of Data Mining, Machine Learning and Big Data Perspectives
    Poudyal, Subash
    Akhtar, Zahid
    Dasgupta, Dipankar
    Gupta, Kishor Datta
    [J]. 2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 649 - 656
  • [33] Big Data Analytics and Mining for Effective Visualization and Trends Forecasting of Crime Data
    Feng, Mingchen
    Zheng, Jiangbin
    Ren, Jinchang
    Hussain, Amir
    Li, Xiuxiu
    Xi, Yue
    Liu, Qiaoyuan
    [J]. IEEE ACCESS, 2019, 7 : 106111 - 106123
  • [34] Business Intelligence Through Big Data Analytics, Data Mining and Machine Learning
    Yafooz, Wael M. S.
    Abu Bakar, Zainab Binti
    Fahad, S. K. Ahammad
    Mithun, Ahamed. M.
    [J]. DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 2, 2020, 1016 : 217 - 230
  • [35] Emerging Trends in Applications of Big Data in Educational Data Mining and Learning Analytics
    Roy, Sagardeep
    Singh, Shailendra Narayan
    [J]. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING (CONFLUENCE 2017), 2017, : 193 - 198
  • [36] Trace Data Analytics with Knowledge Distillation DM: Big Data Management and Mining
    Lee, Janghwan
    Xiong, Wei
    Jang, Wonhyouk
    [J]. 2020 31ST ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2020,
  • [37] Big Data Visual Analytics: Fundamentals, Techniques, and Tools
    Quang Vinh Nguyen
    Engelke, Ulrich
    [J]. SA'17: SIGGRAPH ASIA 2017 COURSES, 2017,
  • [38] Big data and visual analytics in anaesthesia and health care
    Simpao, A. F.
    Ahumada, L. M.
    Rehman, M. A.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2015, 115 (03) : 350 - 356
  • [39] Agile Visual Analytics for Banking Cyber "Big Data"
    Jonker, David
    Langevin, Scott
    Schretlen, Peter
    Canfield, Casey
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 299 - 300
  • [40] SoDA: Dynamic Visual Analytics of Big Social Data
    Hassan, Sabri
    Saenger, Johannes
    Pernul, Guenther
    [J]. 2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 183 - 188