A Visual Analytics Framework for Big Spatiotemporal Data

被引:1
|
作者
Wang, Shaohua [1 ]
Zhong, Ershun [1 ]
Cai, Wenwen [2 ]
Zhou, Qiang [2 ]
Lu, Hao [2 ]
Gu, Yongquan [2 ]
Yun, Weiying [2 ]
Hu, Zhongnan [2 ]
Long, Liang [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, POB 100101, Beijing, Peoples R China
[2] SuperMap Software Co Ltd, POB 100015, Beijing, Peoples R China
关键词
Big Spatiotemporal Data (BSTD); Visual Analytics framework; iDesktop Cross; GIScript; SuperMap GIS; MASS MOBILITY;
D O I
10.1145/3282866.3282869
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatial visual analytics(1) is a critical aspect for big spatiotemporal data (BSTD) in exhibition the hidden spatiotemporal patterns. However, the real-time and dynamic characters of BSTD causes great challenges for the GIS domain and big data domain due to the limitation of the current visual analytics tools. Thus, we propose and implement a visual analytics framework. The framework integrates open source map library and visualization library to provide innovative visual capacity for BSTD. The framework uses GIScript and iDesktop Cross to support high performance BSTD spatial analytics. The application of the framework in global air traffic data proves its efficiency and utility in discovering the global flight patterns. The framework simplifies the visual analytics procedure for BSTD and can be adopted by various domains.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An Integrated Visual Analytics Framework for Spatiotemporal Data
    Wang, Shaohua
    Zhong, Ershun
    Zhou, Qiang
    Cui, Xue
    Lu, Hao
    Yun, Weiying
    Hu, Zhongnan
    Cai, Wenwen
    Long, Liang
    [J]. PROCEEDINGS OF THE 1ST ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ADVANCES IN RESILIENT AND INTELLIGENT CITIES (ARIC-2018), 2018, : 41 - 45
  • [2] DIVE: A Graph-Based Visual-Analytics Framework for Big Data
    Rysavy, Steven J.
    Bromley, Dennis
    Daggett, Valerie
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2014, 34 (02) : 26 - 37
  • [3] BrainTrawler: A visual analytics framework for iterative exploration of heterogeneous big brain data
    Ganglberger, Florian
    Swoboda, Nicolas
    Frauenstein, Lisa
    Kaczanowska, Joanna
    Haubensak, Wulf
    Buehler, Katja
    [J]. COMPUTERS & GRAPHICS-UK, 2019, 82 : 304 - 320
  • [4] A Visual Analytics Framework for Spatiotemporal Trade Network Analysis
    Wang, Hong
    Lu, Yafeng
    Shutters, Shade T.
    Steptoe, Michael
    Wang, Feng
    Landis, Steven
    Maciejewski, Ross
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (01) : 331 - 341
  • [5] Big Spatiotemporal Data Analytics: a research and innovation frontier
    Yang, Chaowei
    Clarke, Keith
    Shekhar, Shashi
    Tao, C. Vincent
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2020, 34 (06) : 1075 - 1088
  • [6] An Intelligent Visual Big Data Analytics Framework for Supporting Interactive Exploration and Visualization of Big OLAP Cubes
    Ordonez, Carlos
    Chen, Zhibo
    Cuzzocrea, Alfredo
    Garcia-Garcia, Javier
    [J]. 2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 421 - 427
  • [7] A big data analytics framework for scientific data management
    Fiore, Sandro
    Palazzo, Cosimo
    D'Anca, Alessandro
    Foster, Ian
    Williams, Dean N.
    Aloisio, Giovanni
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [8] Visual Context Learning with Big Data Analytics
    Chandrashekar, Mayanka
    Lee, Yugyung
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 600 - 607
  • [9] Visual Analytics for Big Data using R
    Nasridinov, Aziz
    Park, Young-Ho
    [J]. 2013 IEEE THIRD INTERNATIONAL CONFERENCE ON CLOUD AND GREEN COMPUTING (CGC 2013), 2013, : 564 - 565
  • [10] Big Data Visual Analytics with Parallel Coordinates
    Heinrich, Julian
    Broeksema, Bertjan
    [J]. 2015 BIG DATA VISUAL ANALYTICS (BDVA), 2015,