A Visual Analytics Framework for Big Spatiotemporal Data

被引:1
|
作者
Wang, Shaohua [1 ]
Zhong, Ershun [1 ]
Cai, Wenwen [2 ]
Zhou, Qiang [2 ]
Lu, Hao [2 ]
Gu, Yongquan [2 ]
Yun, Weiying [2 ]
Hu, Zhongnan [2 ]
Long, Liang [1 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, POB 100101, Beijing, Peoples R China
[2] SuperMap Software Co Ltd, POB 100015, Beijing, Peoples R China
关键词
Big Spatiotemporal Data (BSTD); Visual Analytics framework; iDesktop Cross; GIScript; SuperMap GIS; MASS MOBILITY;
D O I
10.1145/3282866.3282869
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatial visual analytics(1) is a critical aspect for big spatiotemporal data (BSTD) in exhibition the hidden spatiotemporal patterns. However, the real-time and dynamic characters of BSTD causes great challenges for the GIS domain and big data domain due to the limitation of the current visual analytics tools. Thus, we propose and implement a visual analytics framework. The framework integrates open source map library and visualization library to provide innovative visual capacity for BSTD. The framework uses GIScript and iDesktop Cross to support high performance BSTD spatial analytics. The application of the framework in global air traffic data proves its efficiency and utility in discovering the global flight patterns. The framework simplifies the visual analytics procedure for BSTD and can be adopted by various domains.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A Client-based Visual Analytics Framework for Large Spatiotemporal Data under Architectural Constraints
    Wang, Guizhen
    Malik, Abish
    Surakitbanharn, Chittayong
    de Queiroz Neto, Jose Florencio
    Afzal, Shehzad
    Chen, Siqiao
    Wiszowaty, David
    Ebert, David S.
    [J]. 2017 IEEE WORKSHOP ON DATA SYSTEMS FOR INTERACTIVE ANALYSIS (DSIA), 2017,
  • [22] Interactive Visual Analytics Application for Spatiotemporal Movement Data
    Guan Yifei
    Seong, Kam Tin
    [J]. 2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, : 195 - 196
  • [23] Special Issue on Spatiotemporal Big Data Analytics for Transportation Applications
    Chen, Bi Yu
    Kwan, Mei-Po
    [J]. TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2020, 16 (01) : 1 - 4
  • [24] A Visual Data Science Solution for Visualization and Visual Analytics of Big Sequential Data
    Leung, Carson K.
    Wen, Yan
    Zhao, Chenru
    Zheng, Hao
    Jiang, Fan
    Cuzzocrea, Alfredo
    [J]. 2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 229 - 234
  • [25] Big Data Visualisation and Visual Analytics for Music Data Mining
    Barkwell, Katrina E.
    Cuzzocrea, Alfredo
    Leung, Carson K.
    Ocran, Ashley A.
    Sanderson, Jennifer M.
    Stewart, James Ayrton
    Wodi, Bryan H.
    [J]. 2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, : 235 - 240
  • [26] Big Data Analytics Framework for Predictive Analytics using Public Data with Privacy Preserving
    Ho, Duy H.
    Lee, Yugyung
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5395 - 5405
  • [27] Big data and visual analytics in anaesthesia and health care
    Simpao, A. F.
    Ahumada, L. M.
    Rehman, M. A.
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 2015, 115 (03) : 350 - 356
  • [28] A review of infrastructure applications for visual analytics the big data
    Cao, Xiufeng
    Gao, Shu
    Wang, Yan
    [J]. Energy Education Science and Technology Part A: Energy Science and Research, 2014, 32 (05): : 4219 - 4226
  • [29] Agile Visual Analytics for Banking Cyber "Big Data"
    Jonker, David
    Langevin, Scott
    Schretlen, Peter
    Canfield, Casey
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 299 - 300
  • [30] Model-Driven Visual Analytics for Big Data
    Cheng, Shenghui
    Wang, Bing
    Zhong, Wen
    Xie, Cong
    Mahmood, Salman
    Wang, Jun
    Mueller, Klaus
    [J]. 2016 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2016,