Active propagation of dendritic electrical signals in C. elegans

被引:16
|
作者
Shindou, Tomomi [1 ]
Ochi-Shindou, Mayumi [1 ]
Murayama, Takashi [2 ]
Saita, Ei-ichiro [2 ]
Momohara, Yuto [2 ]
Wickens, Jeffery R. [1 ]
Maruyama, Ichiro N. [2 ]
机构
[1] Okinawa Inst Sci & Technol, Grad Univ, Neurobiol Res Unit, Okinawa 9040495, Japan
[2] Okinawa Inst Sci & Technol, Grad Univ, Informat Proc Biol Unit, Okinawa 9040495, Japan
关键词
GRADED SYNAPTIC-TRANSMISSION; PUTATIVE CATION CHANNEL; GATED CALCIUM-CHANNEL; CAENORHABDITIS-ELEGANS; ACTION-POTENTIALS; NEURONAL-ACTIVITY; CHEMOTAXIS; DEPHOSPHORYLATION; MOTORNEURONS; TRANSDUCTION;
D O I
10.1038/s41598-019-40158-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supra linear depolarization of ASEL upon current injection. Furthermore, stimulation of animal's nose with NaCI evoked all-ornone membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the oil subunit of L-type voltage-gated Ca2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C. elegans chemotaxis along an NaCI gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C. elegans, and is necessary for adaptive behavior.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] C. elegans Embryonic Morphogenesis
    Vuong-Brender, Thanh T. K.
    Yang, Xinyi
    Labouesse, Michel
    ESSAYS ON DEVELOPMENTAL BIOLOGY, PT A, 2016, 116 : 597 - +
  • [42] Mapping Mutations in C. elegans
    Lambie, Eric J.
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 3 - 22
  • [43] Longevity, lipids and C. elegans
    Hulbert, A. J.
    AGING-US, 2011, 3 (02): : 81 - 82
  • [44] Adhesion Energy of C. elegans
    M.W. Keller
    R. Mailler
    K. Adams
    Experimental Mechanics, 2018, 58 : 1281 - 1289
  • [45] The mevalonate pathway in C. elegans
    Manish Rauthan
    Marc Pilon
    Lipids in Health and Disease, 10
  • [46] Gut development in C. elegans
    Maduro, Morris F.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2017, 66 : 3 - 11
  • [47] INNATE IMMUNITY IN C. ELEGANS
    Engelmann, Ilka
    Pujol, Nathalie
    INVERTEBRATE IMMUNITY, 2010, 708 : 105 - 121
  • [48] Axon regeneration in C. elegans
    Hammarlund, Marc
    Jin, Yishi
    CURRENT OPINION IN NEUROBIOLOGY, 2014, 27 : 199 - 207
  • [49] The C. elegans embryonic transcriptome
    Lin Tang
    Nature Methods, 2019, 16 : 1079 - 1079
  • [50] The C. elegans embryonic transcriptome
    Tang, Lei
    NATURE METHODS, 2019, 16 (11) : 1079 - 1079