Active propagation of dendritic electrical signals in C. elegans

被引:16
|
作者
Shindou, Tomomi [1 ]
Ochi-Shindou, Mayumi [1 ]
Murayama, Takashi [2 ]
Saita, Ei-ichiro [2 ]
Momohara, Yuto [2 ]
Wickens, Jeffery R. [1 ]
Maruyama, Ichiro N. [2 ]
机构
[1] Okinawa Inst Sci & Technol, Grad Univ, Neurobiol Res Unit, Okinawa 9040495, Japan
[2] Okinawa Inst Sci & Technol, Grad Univ, Informat Proc Biol Unit, Okinawa 9040495, Japan
关键词
GRADED SYNAPTIC-TRANSMISSION; PUTATIVE CATION CHANNEL; GATED CALCIUM-CHANNEL; CAENORHABDITIS-ELEGANS; ACTION-POTENTIALS; NEURONAL-ACTIVITY; CHEMOTAXIS; DEPHOSPHORYLATION; MOTORNEURONS; TRANSDUCTION;
D O I
10.1038/s41598-019-40158-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supra linear depolarization of ASEL upon current injection. Furthermore, stimulation of animal's nose with NaCI evoked all-ornone membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the oil subunit of L-type voltage-gated Ca2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C. elegans chemotaxis along an NaCI gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C. elegans, and is necessary for adaptive behavior.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Hyperoxic responses in C. elegans
    Payvar, F
    DeMatteo, A
    Hazinski, TA
    PEDIATRIC RESEARCH, 2000, 47 (04) : 480A - 480A
  • [32] RNA Processing in C. elegans
    Morton, J. Jason
    Blumenthal, Thomas
    CAENORHABDITIS ELEGANS: MOLECULAR GENETICS AND DEVELOPMENT, SECOND EDITION, 2011, 106 : 187 - 217
  • [33] Expansion microscopy of C. elegans
    Yu, Chih-Chieh
    Barry, Nicholas C.
    Wassie, Asmamaw T.
    Sinha, Anubhav
    Bhattacharya, Abhishek
    Asano, Shoh
    Zhang, Chi
    Chen, Fei
    Hobert, Oliver
    Goodman, Miriam B.
    Haspel, Gal
    Boyden, Edward S.
    ELIFE, 2020, 9 : 1 - 78
  • [34] More neuropeptides in C. elegans
    Tavernarakis N.
    Genome Biology, 3 (2)
  • [35] CLASPs in the C. elegans embryo
    Espiritu, Eugenel B.
    Krueger, Lori E.
    Ye, Anna A.
    Rose, Lesilee S.
    DEVELOPMENTAL BIOLOGY, 2010, 344 (01) : 457 - 457
  • [36] Modal Locomotion of C. elegans
    Mujika, A.
    Merino, S.
    Leskovsky, P.
    Epelde, G.
    Oyarzun, D.
    Otaduy, M. A.
    XXIX SPANISH COMPUTER GRAPHICS CONFERENCE (CEIG19), 2019, : 1 - 8
  • [37] C. elegans — an innate choice?
    Jane Alfred
    Nature Reviews Genetics, 2002, 3 : 651 - 651
  • [38] Autophagy in C. elegans development
    Palmisano, Nicholas J.
    Melendez, Alicia
    DEVELOPMENTAL BIOLOGY, 2019, 447 (01) : 103 - 125
  • [39] C. elegans model of ALS
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2015, 43 (03): : 151 - 152
  • [40] Transcriptional adaptation in C. elegans
    Le Bras, Alexandra
    LAB ANIMAL, 2020, 49 (03) : 72 - 72