Active propagation of dendritic electrical signals in C. elegans

被引:16
|
作者
Shindou, Tomomi [1 ]
Ochi-Shindou, Mayumi [1 ]
Murayama, Takashi [2 ]
Saita, Ei-ichiro [2 ]
Momohara, Yuto [2 ]
Wickens, Jeffery R. [1 ]
Maruyama, Ichiro N. [2 ]
机构
[1] Okinawa Inst Sci & Technol, Grad Univ, Neurobiol Res Unit, Okinawa 9040495, Japan
[2] Okinawa Inst Sci & Technol, Grad Univ, Informat Proc Biol Unit, Okinawa 9040495, Japan
关键词
GRADED SYNAPTIC-TRANSMISSION; PUTATIVE CATION CHANNEL; GATED CALCIUM-CHANNEL; CAENORHABDITIS-ELEGANS; ACTION-POTENTIALS; NEURONAL-ACTIVITY; CHEMOTAXIS; DEPHOSPHORYLATION; MOTORNEURONS; TRANSDUCTION;
D O I
10.1038/s41598-019-40158-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Active propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supra linear depolarization of ASEL upon current injection. Furthermore, stimulation of animal's nose with NaCI evoked all-ornone membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the oil subunit of L-type voltage-gated Ca2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C. elegans chemotaxis along an NaCI gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C. elegans, and is necessary for adaptive behavior.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Active Graph Matching for Automatic Joint Segmentation and Annotation of C. elegans
    Kainmueller, Dagmar
    Jug, Florian
    Rother, Carsten
    Myers, Gene
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I, 2014, 8673 : 81 - +
  • [22] C. elegans Models to Study the Propagation of Prions and Prion-Like Proteins
    Sandhof, Carl Alexander
    Hoppe, Simon Oliver
    Tittelmeier, Jessica
    Nussbaum-Krammer, Carmen
    BIOMOLECULES, 2020, 10 (08) : 1 - 23
  • [23] Dendritic tree extraction from noisy maximum intensity projection images in C. elegans
    Ayala Greenblum
    Raphael Sznitman
    Pascal Fua
    Paulo E Arratia
    Meital Oren
    Benjamin Podbilewicz
    Josué Sznitman
    BioMedical Engineering OnLine, 13
  • [24] Power consumption during forward locomotion of C. elegans: an electrical circuit simulation
    Jenderny, Sebastian
    Ochs, Karlheinz
    Hoevel, Philipp
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (04):
  • [25] Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans
    Rabinowitch, Ithai
    Chatzigeorgiou, Marios
    Zhao, Buyun
    Treinin, Millet
    Schafer, William R.
    NATURE COMMUNICATIONS, 2014, 5
  • [26] Rewiring neural circuits by the insertion of ectopic electrical synapses in transgenic C. elegans
    Ithai Rabinowitch
    Marios Chatzigeorgiou
    Buyun Zhao
    Millet Treinin
    William R. Schafer
    Nature Communications, 5
  • [27] Centriole assembly in C. elegans
    Pelletier, L
    O'Toole, ET
    Schwager, A
    Hyman, AA
    Müller-Reichert, T
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2006, 85 : 122 - 123
  • [28] C. elegans: A Practical Approach
    Louise Michaelson
    Heredity, 2000, 85 (1) : 99 - 99
  • [29] TRP channels in C. elegans
    Kahn-Kirby, AH
    Bargmann, CI
    ANNUAL REVIEW OF PHYSIOLOGY, 2006, 68 : 719 - 736
  • [30] Cancer Research with C. elegans
    不详
    ATLA-ALTERNATIVES TO LABORATORY ANIMALS, 2012, 40 (04): : 193 - 193