Error estimates for least squares finite element methods

被引:4
|
作者
Bedivan, DM [1 ]
机构
[1] Univ Al I Cuza, Fac Matemat, Iasi 6600, Romania
关键词
least squares; finite element method; error estimates;
D O I
10.1016/S0898-1221(02)80009-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A least squares finite element scheme for a boundary value problem associated with a second-order partial differential equation is considered. Previous work on this subject is generalized and improved by considering a larger class of equations, by working in the natural context, without additional smoothness conditions, and by deriving error estimates, not only in the H-1-norm and the H-div-norm, but also in the L-2-norm. Some of these estimates are sharpened by using finite element spaces with the grid decomposition property. The error estimates are supported by numerical results which extend previous numerical work. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1003 / 1020
页数:18
相关论文
共 50 条
  • [21] A posteriori error estimates for nonconforming finite element methods
    Carsten Carstensen
    Sören Bartels
    Stefan Jansche
    Numerische Mathematik, 2002, 92 : 233 - 256
  • [22] A posteriori error estimates of finite element methods by preconditioning
    Li, Yuwen
    Zikatanov, Ludmil
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 192 - 201
  • [23] On accurate error estimates for the quaternion least squares and weighted least squares problems
    Li, Ying
    Wei, Musheng
    Zhang, Fengxia
    Zhao, Jianli
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (08) : 1662 - 1677
  • [24] ERROR BOUNDS FOR LEAST SQUARES GRADIENT ESTIMATES
    Turner, Ian W.
    Belward, John A.
    Oqielat, Moa'ath N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04): : 2146 - 2166
  • [25] Error estimates for the regularization of least squares problems
    Brezinski, C.
    Rodriguez, G.
    Seatzu, S.
    NUMERICAL ALGORITHMS, 2009, 51 (01) : 61 - 76
  • [26] Error estimates for the regularization of least squares problems
    C. Brezinski
    G. Rodriguez
    S. Seatzu
    Numerical Algorithms, 2009, 51 : 61 - 76
  • [27] A posteriori error estimation in least-squares stabilized finite element schemes
    Rannacher, R
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 166 (1-2) : 99 - 114
  • [28] Least-squares mixed finite element methods for the RLW equations
    Gu, Haiming
    Chen, Ning
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 749 - 758
  • [29] Adaptive Least Squares Finite Element Methods in Elasto-Plasticity
    Starke, Gerhard
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 671 - 678
  • [30] Nonconforming elements in least-squares mixed finite element methods
    Duan, HY
    Liang, GP
    MATHEMATICS OF COMPUTATION, 2004, 73 (245) : 1 - 18