second-order elliptic problem;
least-squares mixed finite element method;
nonconforming element;
normal continuous element;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated Q(1) nonconforming element and the lowest-order Raviart-Thomas element.
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Chen, Fuchen
Chung, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Chung, Eric
Jiang, Lijian
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Math, Shanghai 200092, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100080, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, Beijing 100080, Peoples R China