Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Perturbation theory for nonlinear Klein-Gordon kinks
    Yan, JR
    Tang, Y
    Zhou, GH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1999, 32 (03) : 375 - 380
  • [2] Moving kinks and nanopterons in the nonlinear Klein-Gordon lattice
    Savin, AV
    Zolotaryuk, Y
    Eilbeck, JC
    PHYSICA D, 2000, 138 (3-4): : 267 - 281
  • [3] Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics
    Kevrekidis, P. G.
    Danaila, I
    Caputo, J-G
    Carretero-Gonzalez, R.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [4] SYMMETRY GROUP OF THE NONLINEAR KLEIN-GORDON EQUATION
    RUDRA, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : 2499 - 2504
  • [5] Interplay of disorder and nonlinearity in Klein-Gordon models:: Immobile kinks
    Mingaleev, SF
    Gaididei, YB
    Majerníková, E
    Shpyrko, S
    PHYSICAL REVIEW B, 1999, 59 (06) : 4074 - 4079
  • [6] PROPAGATION AND STABILITY OF KINKS IN DRIVEN AND DAMPED NONLINEAR KLEIN-GORDON CHAINS
    BUTTIKER, M
    THOMAS, H
    PHYSICAL REVIEW A, 1988, 37 (01): : 235 - 246
  • [7] STABILITY THEORY FOR NONLINEAR KLEIN-GORDON KINKS AND MORSE INDEX THEOREM
    ITO, H
    TASAKI, H
    PHYSICS LETTERS A, 1985, 113 (04) : 179 - 182
  • [8] PROPAGATION AND STABILITY OF KINKS IN DRIVEN AND DAMPED NONLINEAR KLEIN-GORDON CHAINS
    BUTTIKER, M
    THOMAS, H
    JOURNAL OF STATISTICAL PHYSICS, 1989, 54 (5-6) : 1427 - 1427
  • [9] Compactons in discrete nonlinear Klein-Gordon models
    Kevrekidis, PG
    Konotop, VV
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 79 - 89
  • [10] On the Spectral Stability of Kinks in 2D Klein-Gordon Model with Parity-Time-Symmetric Perturbation
    Borisov, D. I.
    Dmitriev, S. V.
    STUDIES IN APPLIED MATHEMATICS, 2017, 138 (03) : 317 - 342