Approximation by Jakimovski-Leviatan-Paltanea operators involving Sheffer polynomials

被引:8
|
作者
Mursaleen, M. [1 ]
AL-Abeid, A. A. H. [1 ]
Ansari, Khursheed J. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Szasz operators; Phillips operators; Modulus of continuity; Korovkin's theorem; Sheffer polynomials; VARIANT;
D O I
10.1007/s13398-018-0546-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to introduce Jakimovski-Leviatan-Paltanea operators which involve Sheffer polynomials. We investigate approximation properties of our operators with the help of the universal Korovkin-type property and also establish the rate of convergence by using the modulus of continuity, second order modulus of smoothness and Petree's K-functional. Furthermore, we study the approximation by functions of bounded variations. Some graphical examples of the convergence of our operators and error estimation are also given.
引用
收藏
页码:1251 / 1265
页数:15
相关论文
共 50 条
  • [41] Approximation of GBS Type q-Jakimovski-Leviatan-Beta Integral Operators in Bogel Space
    Alotaibi, Abdullah
    [J]. MATHEMATICS, 2022, 10 (05)
  • [42] Bézier variant of the Jakimovski–Leviatan–Păltănea operators based on Appell polynomials
    Goyal M.
    Agrawal P.N.
    [J]. ANNALI DELL'UNIVERSITA' DI FERRARA, 2017, 63 (2) : 289 - 302
  • [43] Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue
    Nasiruzzaman, Md.
    Tom, Mohammed A. O.
    Serra-Capizzano, Stefano
    Rao, Nadeem
    Ayman-Mursaleen, Mohammad
    [J]. FILOMAT, 2023, 37 (24) : 8389 - 8404
  • [44] On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
    Alotaibi, Abdullah
    [J]. MATHEMATICS, 2023, 11 (04)
  • [45] On Voronovskaya Type Result for Generalized Jakimovski-Leviatan Operators
    Yilmaz, Mine Menekse
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [46] APPROXIMATION BY MODIFIED PALTANEA OPERATORS
    Gupta, Vijay
    Agrawal, P. N.
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 107 (121): : 157 - 164
  • [47] Some results on generalized Szasz operators involving Sheffer polynomials
    Costabile, Francesco Aldo
    Gualtieri, Maria Italia
    Napoli, Anna
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 244 - 255
  • [48] Generalization of Szász operators involving multiple Sheffer polynomials
    Mahvish Ali
    Richard B. Paris
    [J]. The Journal of Analysis, 2023, 31 : 1 - 19
  • [49] On the approximation by Bezier-Paltanea operators based on Gould-Hopper polynomials
    Mursaleen, Mohammad
    Rahman, Shagufta
    Ansari, Khursheed J.
    [J]. MATHEMATICAL COMMUNICATIONS, 2019, 24 (02) : 147 - 164
  • [50] Note On Jakimovski-Leviatan Operators Preserving e-x
    Acar, Ecem
    Izgi, Aydin
    Serenbay, Sevilay Kirci
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (02) : 543 - 550