Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue

被引:7
|
作者
Nasiruzzaman, Md. [1 ]
Tom, Mohammed A. O. [1 ]
Serra-Capizzano, Stefano [2 ,3 ]
Rao, Nadeem [4 ]
Ayman-Mursaleen, Mohammad [5 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 4279, Tabuk 71491, Saudi Arabia
[2] Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
[3] Uppsala Univ, Dept Informat Technol, Div Sci Comp, Gerhyddsv 2,Hus 2,POB 337, SE-75105 Uppsala, Sweden
[4] Chandigarh Univ, Univ Ctr Res & Developement, Dept Math, Mohali 140413, Punjab, India
[5] Univ Newcastle, Sch Informat & Phys Sci, Univ Dr, Callaghan, NSW 2308, Australia
关键词
Appell polynomials; q-Appellpolynomials; Jakimovski-Leviatan operators; Korovkin's theorem; modulus of continuity; BERNSTEIN OPERATORS; CONVERGENCE; SEQUENCES; KOROVKIN;
D O I
10.2298/FIL2324389N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new version of q-Jakimovski-Leviatan type integral operators and show that set of all continuous functions f defined on [0, & INFIN;) are uniformly approximated by our new operators. Finally we construct the Stancu type operators and obtain approximation properties in weighted spaces. Moreover, with the aid of modulus of continuity we discuss the rate of convergence, Lipschitz type maximal approximation and some direct theorems.
引用
收藏
页码:8389 / 8404
页数:16
相关论文
共 50 条
  • [1] Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials
    Mursaleen, M.
    Ansari, Khursheed J.
    Nasiruzzaman, Md
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A4): : 891 - 900
  • [2] Approximation by Chlodowsky type Jakimovski-Leviatan operators
    Buyukyazici, Ibrahim
    Tanberkan, Hande
    Serenbay, Sevilay Kirci
    Atakut, Cigdem
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 153 - 163
  • [3] Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain
    Sucu, Sezgin
    Ibikli, Ertan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 177 - 188
  • [4] Approximation by a Generalization of the Jakimovski-Leviatan Operators
    Ari, Didem Aydin
    Serenbay, Sevilay Kirci
    FILOMAT, 2019, 33 (08) : 2345 - 2353
  • [5] Approximation by q-analogue of Jakimovski–Leviatan operators involving q-Appell polynomials
    M. Mursaleen
    Khursheed J. Ansari
    Md Nasiruzzaman
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 891 - 900
  • [6] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    FILOMAT, 2016, 30 (01) : 29 - 39
  • [7] Generalization of Jakimovski-Leviatan type Szasz operators
    Sucu, Sezgin
    Varma, Serhan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 977 - 983
  • [8] Approximation of Jakimovski-Leviatan-Beta type integral operators via q-calculus
    Alotaibi, Abdullah
    Mursaleen, M.
    AIMS MATHEMATICS, 2020, 5 (04): : 3019 - 3034
  • [9] Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials
    Ansari, Khursheed J.
    Mursaleen, M.
    Rahman, Shagufta
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1007 - 1024
  • [10] On Voronovskaya Type Result for Generalized Jakimovski-Leviatan Operators
    Yilmaz, Mine Menekse
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094