Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue

被引:7
|
作者
Nasiruzzaman, Md. [1 ]
Tom, Mohammed A. O. [1 ]
Serra-Capizzano, Stefano [2 ,3 ]
Rao, Nadeem [4 ]
Ayman-Mursaleen, Mohammad [5 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 4279, Tabuk 71491, Saudi Arabia
[2] Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
[3] Uppsala Univ, Dept Informat Technol, Div Sci Comp, Gerhyddsv 2,Hus 2,POB 337, SE-75105 Uppsala, Sweden
[4] Chandigarh Univ, Univ Ctr Res & Developement, Dept Math, Mohali 140413, Punjab, India
[5] Univ Newcastle, Sch Informat & Phys Sci, Univ Dr, Callaghan, NSW 2308, Australia
关键词
Appell polynomials; q-Appellpolynomials; Jakimovski-Leviatan operators; Korovkin's theorem; modulus of continuity; BERNSTEIN OPERATORS; CONVERGENCE; SEQUENCES; KOROVKIN;
D O I
10.2298/FIL2324389N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a new version of q-Jakimovski-Leviatan type integral operators and show that set of all continuous functions f defined on [0, & INFIN;) are uniformly approximated by our new operators. Finally we construct the Stancu type operators and obtain approximation properties in weighted spaces. Moreover, with the aid of modulus of continuity we discuss the rate of convergence, Lipschitz type maximal approximation and some direct theorems.
引用
收藏
页码:8389 / 8404
页数:16
相关论文
共 50 条
  • [21] Approximation by Jakimovski–Leviatan-beta operators in weighted space
    M. Nasiruzzaman
    M. Mursaleen
    Advances in Difference Equations, 2020
  • [22] Approximation by Jakimovski-Leviatan-beta operators in weighted space
    Nasiruzzaman, M.
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [23] APPROXIMATION BY STANCU TYPE JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS
    Kumar, Alok
    Vandana
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 936 - 948
  • [24] Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer Type Operators
    Mursaleen, M.
    Rahman, Shagufta
    Ansari, Khursheed J.
    FILOMAT, 2019, 33 (06) : 1517 - 1530
  • [25] Approximation by Szasz-Jakimovski-Leviatan-Type Operators via Aid of Appell Polynomials
    Nasiruzzaman, Md
    Aljohani, A. F.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [26] On the Approximation by Stancu-Type Bivariate Jakimovski–Leviatan–Durrmeyer Operators
    Karateke S.
    Zontul M.
    Mishra V.N.
    Gairola A.R.
    La Matematica, 2024, 3 (1): : 211 - 233
  • [27] Rates of convergence for Jakimovski-Leviatan operators in terms of the Ditzian-Totikmodulus
    Acu, Ana-Maria
    Adell, Jose A.
    Rasa, Ioan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
  • [28] Degree of approximation by Chlodowsky variant of Jakimovski–Leviatan–Durrmeyer type operators
    Trapti Neer
    Ana Maria Acu
    P. N. Agrawal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3445 - 3459
  • [29] On the Approximation of Szász-Jakimovski-Leviatan Beta Type Integral Operators Enhanced by Appell Polynomials
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    IRANIAN JOURNAL OF SCIENCE, 2025,
  • [30] On the Approximation Properties of q-Analogue Bivariate λ-Bernstein Type Operators
    Aliaga, Edmond
    Baxhaku, Behar
    JOURNAL OF FUNCTION SPACES, 2020, 2020