The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics

被引:65
|
作者
Kaufmann, Thomas [1 ]
Fumeaux, Christophe [1 ]
Vahldieck, Ruediger [1 ]
机构
[1] ETH, Lab Electromagnet Fields & Microwave Elect, IFH, CH-8092 Zurich, Switzerland
关键词
Meshless Methods; Time domain analysis; Radial Point Interpolation Method;
D O I
10.1109/MWSYM.2008.4633103
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A meshless numerical technique based on radial point interpolation is introduced for electromagnetic simulations in time domain. The general class of meshless methods presents very attractive properties for addressing future challenges of electromagnetic modeling. Among the interesting aspects, the ability to handle arbitrary node distributions for conformal and multi-scale modeling can be mentioned first. Furthermore, the possibility of modifying the node distribution dynamically opens new perspectives for adaptive computations and optimization. The mathematical background of the radial point interpolation method and a two-dimensional implementation are presented here. The advantages of this meshless method are discussed and applied to a model consisting of a 90 degree H-plane waveguide bend. It is shown that solutions converge much faster using the ability of conformal modeling compared to a similar analysis in rectangular grids.
引用
下载
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [41] Bending analysis for moderately thick plates by meshless radial point interpolation method
    Xia, Ping
    Long, Shu-Yao
    Hu, Wei-Jun
    2008, Hunan University (35):
  • [42] An Adaptive Radial Point Interpolation Meshless Method for Simulation of Electromagnetic and Optical Fields
    Afsari, Arman
    Movahhedi, Masoud
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (07)
  • [43] An application of the meshless radial point interpolation method to the structural topology optimization design
    Zheng, Juan
    Long, Shuyao
    Xiong, Yuanbo
    Li, Guangyao
    Guti Lixue Xuebao/Acta Mechanica Solida Sinica, 2010, 31 (04): : 427 - 432
  • [44] On the Numerical Dispersion of the Radial Point Interpolation Meshless (RPIM) Method in Lossy Media
    Zhang, Xiaoyan
    Chen, Zhizhang
    Yu, Yiqiang
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (12): : 1332 - 1339
  • [45] Radial Point Interpolation Method (RPIM) for the Meshless Analysis of Graphene Nano Ribbon
    Nivetha, J.
    Kanthamani, S.
    IETE JOURNAL OF RESEARCH, 2021, 67 (03) : 408 - 413
  • [46] Study of Periodic Structures at Oblique Incidence by Radial Point Interpolation Meshless Method
    Zhu, Hui
    Gao, Cheng
    Chen, Hailin
    Chen, Bin
    Wang, Jianbao
    Cai, Zhaoyang
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2015, 14 : 982 - 985
  • [47] Meshless method of radial point interpolation functions for elasticity Hamilton canonical equation
    Li, Ding-He
    Qing, Guang-Hui
    Xu, Jian-Xin
    Gongcheng Lixue/Engineering Mechanics, 2011, 28 (10): : 46 - 51
  • [48] A meshless weak radial point interpolation method for predicting underwater acoustic radiation
    Wu S.
    Ke L.
    Han G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (04): : 145 - 155
  • [49] Optimized schemes for time-domain electromagnetics
    Gaitonde, DV
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 118 - 121
  • [50] TIME-DOMAIN ELECTROMAGNETICS AND ITS APPLICATIONS
    BENNETT, CL
    ROSS, GF
    PROCEEDINGS OF THE IEEE, 1978, 66 (03) : 299 - 318