On the Numerical Dispersion of the Radial Point Interpolation Meshless (RPIM) Method in Lossy Media

被引:0
|
作者
Zhang, Xiaoyan [1 ,2 ]
Chen, Zhizhang [3 ]
Yu, Yiqiang [1 ,3 ]
机构
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Jiangxi, Peoples R China
[2] State Key Lab Millimeter Waves, Nanjing 210096, Peoples R China
[3] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Gaussian basis function; multiquadric basis function; numerical dispersion; radial point interpolation method (RPIM); TIME-DOMAIN METHODS; STABILITY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A general formula for numerical dispersion of the two-dimensional time-domain radial point interpolation meshless (2-D RPIM) method is analytically derived. Numerical loss and dispersion characteristics of the RPIM method with both Gaussian and multiquadric basis functions are investigated. It is found that numerical loss and dispersion errors of the RPIM vary with types of basis functions used and associated parameters, number of the nodes, and medium conductivities. In addition, condition numbers of the moment matrix of the meshless methods can also increase numerical dispersion errors. With a reasonable condition number of the moment matrix, the radial point interpolation meshless methods perform generally better than the FDTD method in terms of numerical dispersion errors.
引用
收藏
页码:1332 / 1339
页数:8
相关论文
共 50 条
  • [1] On the Numerical Dispersion of the Radial Point Interpolation Meshless Method
    Yang, Shunchuan
    Chen, Zhizhang
    Yu, Yiqiang
    Ponomarenko, Sergey
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (10) : 653 - 655
  • [2] Numerical Dispersion Analysis of Radial Point Interpolation Meshless Method
    Zhang, Xiaoyan
    Ye, Peng
    Chen, Zhizhang
    Yu, Yiqiang
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 717 - 719
  • [3] Radial Point Interpolation Method (RPIM) for the Meshless Analysis of Graphene Nano Ribbon
    Nivetha, J.
    Kanthamani, S.
    [J]. IETE JOURNAL OF RESEARCH, 2021, 67 (03) : 408 - 413
  • [4] Numerical Solution of Natural Convection Problems Using Radial Point Interpolation Meshless (RPIM) Method Combined with Artificial-Compressibility Model
    Pranowo, Albertus Joko
    Santoso, Albertus Joko
    Wijayanta, Agung Tri
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (03)
  • [5] The Meshfree Radial Point Interpolation Method (RPIM) for Wave Propagation Dynamics in Non-Homogeneous Media
    Liu, Cong
    Min, Shaosong
    Pang, Yandong
    Chai, Yingbin
    [J]. MATHEMATICS, 2023, 11 (03)
  • [6] Pseudospectral Meshless Radial Point Hermit Interpolation Versus Pseudospectral Meshless Radial Point Interpolation
    Shivanian, Elyas
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (07)
  • [7] Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM)
    Dehghan, Mehdi
    Ghesmati, Arezou
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (04) : 772 - 786
  • [8] Anisotropy Analysis of the 3D-Radial Point Interpolation Method in Lossy Media
    Hichem, Naamen
    Hamouda, Ajmi B. H.
    Aguili, Taoufik
    [J]. Progress In Electromagnetics Research C, 2023, 128 : 207 - 218
  • [9] A meshfree radial point interpolation method (RPIM) for three-dimensional solids
    Liu, GR
    Zhang, GY
    Gu, YT
    Wang, YY
    [J]. COMPUTATIONAL MECHANICS, 2005, 36 (06) : 421 - 430
  • [10] A linearly conforming radial point interpolation method (LC-RPIM) for shells
    X. Zhao
    G. R. Liu
    K. Y. Dai
    Z. H. Zhong
    G. Y. Li
    X. Han
    [J]. Computational Mechanics, 2009, 43 : 403 - 413