The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics

被引:65
|
作者
Kaufmann, Thomas [1 ]
Fumeaux, Christophe [1 ]
Vahldieck, Ruediger [1 ]
机构
[1] ETH, Lab Electromagnet Fields & Microwave Elect, IFH, CH-8092 Zurich, Switzerland
关键词
Meshless Methods; Time domain analysis; Radial Point Interpolation Method;
D O I
10.1109/MWSYM.2008.4633103
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A meshless numerical technique based on radial point interpolation is introduced for electromagnetic simulations in time domain. The general class of meshless methods presents very attractive properties for addressing future challenges of electromagnetic modeling. Among the interesting aspects, the ability to handle arbitrary node distributions for conformal and multi-scale modeling can be mentioned first. Furthermore, the possibility of modifying the node distribution dynamically opens new perspectives for adaptive computations and optimization. The mathematical background of the radial point interpolation method and a two-dimensional implementation are presented here. The advantages of this meshless method are discussed and applied to a model consisting of a 90 degree H-plane waveguide bend. It is shown that solutions converge much faster using the ability of conformal modeling compared to a similar analysis in rectangular grids.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [31] An enriched radial point interpolation meshless method based on partition of unity
    Ma Wen-tao
    Li Ning
    Shi Jun-ping
    ROCK AND SOIL MECHANICS, 2012, 33 (12) : 3795 - 3800
  • [32] An Unconditionally Stable Radial Point Interpolation Meshless Method With Laguerre Polynomials
    Chen, Xiaojie
    Chen, Zhizhang
    Yu, Yiqiang
    Su, Donglin
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (10) : 3756 - 3763
  • [33] Implementation of Material Interface Conditions in the Radial Point Interpolation Meshless Method
    Yu, Yiqiang
    Chen, Zhizhang
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (08) : 2916 - 2923
  • [34] TIME-DOMAIN MODELING IN ELECTROMAGNETICS
    MILLER, EK
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1994, 8 (9-10) : 1125 - 1172
  • [35] A Time-Domain Collocation Meshless Method With Local Radial Basis Functions for Electromagnetic Transient Analysis
    Yang, Shunchuan
    Yu, Yiqiang
    Chen, Zhizhang
    Ponomarenko, Sergey
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (10) : 5334 - 5338
  • [36] The meshless radial point interpolation method with ρ∞-Bathe implicit time discretization algorithm for transient elastodynamic analysis
    Zhang, Xiaoyan
    Xue, Hongjun
    Cheng, Jiaao
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 162 : 184 - 202
  • [37] COUPLING PROJECTION DOMAIN DECOMPOSITION METHOD AND MESHLESS COLLOCATION METHOD USING RADIAL BASIS FUNCTIONS IN ELECTROMAGNETICS
    Duan, Y.
    Lai, S. J.
    Huang, T. Z.
    PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2008, 5 : 1 - 12
  • [38] Meshless Eigenvalue Analysis for Resonant Structures Based on the Radial Point Interpolation Method
    Kaufmann, Thomas
    Fumeaux, Christophe
    Engstroem, Christian
    Vahldieck, Ruediger
    APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5, 2009, : 818 - +
  • [39] Application of the Meshless Local Radial Point Interpolation Method on Vector Eigenvalue Problems
    Andrade, Marcio
    Resende, Ursula
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4
  • [40] Simulation of the viscoplastic extrusion process using the radial point interpolation meshless method
    Costa, Ross
    Belinha, J.
    Jorge, R. M. Natal
    Rodrigues, Des
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2021, 235 (06) : 1203 - 1225