The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics

被引:65
|
作者
Kaufmann, Thomas [1 ]
Fumeaux, Christophe [1 ]
Vahldieck, Ruediger [1 ]
机构
[1] ETH, Lab Electromagnet Fields & Microwave Elect, IFH, CH-8092 Zurich, Switzerland
关键词
Meshless Methods; Time domain analysis; Radial Point Interpolation Method;
D O I
10.1109/MWSYM.2008.4633103
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A meshless numerical technique based on radial point interpolation is introduced for electromagnetic simulations in time domain. The general class of meshless methods presents very attractive properties for addressing future challenges of electromagnetic modeling. Among the interesting aspects, the ability to handle arbitrary node distributions for conformal and multi-scale modeling can be mentioned first. Furthermore, the possibility of modifying the node distribution dynamically opens new perspectives for adaptive computations and optimization. The mathematical background of the radial point interpolation method and a two-dimensional implementation are presented here. The advantages of this meshless method are discussed and applied to a model consisting of a 90 degree H-plane waveguide bend. It is shown that solutions converge much faster using the ability of conformal modeling compared to a similar analysis in rectangular grids.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [1] Recent developments of the meshless radial point interpolation method for time-domain electromagnetics
    Kaufmann, T.
    Yu, Y.
    Engstroem, C.
    Chen, Z.
    Fumeaux, C.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 468 - 489
  • [2] Time-domain vector potential technique for the meshless radial point interpolation method
    Shaterian, Zahra
    Kaufmann, Thomas
    Fumeaux, Christophe
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (12) : 1830 - 1838
  • [3] A 3-D Radial Point Interpolation Method for Meshless Time-Domain Modeling
    Yu, Yiqiang
    Chen, Zhizhang
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (08) : 2015 - 2020
  • [4] Simulation of Corrugated Coaxial Cables using the Meshless Radial Point Interpolation Time-Domain Method
    Bocklin, Christoph
    Kaufmann, Thomas
    Hoffmann, Johannes
    Fumeaux, Christophe
    Vahldieck, Rudiger
    [J]. 2009 20TH INTERNATIONAL ZURICH SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, 2009, : 309 - +
  • [5] Mixed basis function for radial point interpolation meshless method in electromagnetics
    Afsari, Arman
    [J]. JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2015, 29 (06) : 786 - 797
  • [6] Impact of Different Node Distributions on the Meshless Radial Point Interpolation Method in Time-Domain Electromagnetic Simulations
    Shaterian, Zahra
    Kaufmann, Thomas
    Fumeaux, Christophe
    [J]. 2012 ASIA-PACIFIC MICROWAVE CONFERENCE (APMC 2012), 2012, : 1322 - 1324
  • [7] Modeling of Dielectric Material Interfaces for the Radial Point Interpolation Time-Domain Method
    Kaufmann, Thomas
    Merz, Thomas
    Fumeaux, Christophe
    Vahldieck, Ruediger
    [J]. 2009 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, VOLS 1-3, 2009, : 245 - +
  • [8] Eigenvalue Analysis and Longtime Stability of Resonant Structures for the Meshless Radial Point Interpolation Method in Time Domain
    Kaufmann, Thomas
    Engstroem, Christian
    Fumeaux, Christophe
    Vahldieck, Ruediger
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2010, 58 (12) : 3399 - 3408
  • [9] On the Numerical Dispersion of the Radial Point Interpolation Meshless Method
    Yang, Shunchuan
    Chen, Zhizhang
    Yu, Yiqiang
    Ponomarenko, Sergey
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (10) : 653 - 655
  • [10] A Scattered Field Formulation of the Time-Domain Radial Point Interpolation Method using Radial Perfectly Matched Layers
    Kaufmann, Thomas
    Fumeaux, Christophe
    [J]. 2012 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2012, : 713 - 716