Mixed basis function for radial point interpolation meshless method in electromagnetics

被引:1
|
作者
Afsari, Arman [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
关键词
shape parameters; parallel plate waveguide; basis function; meshless method; BOUNDARY-CONDITIONS; GALERKIN METHOD; WAVE-GUIDE; SIMULATION; RBF;
D O I
10.1080/09205071.2015.1024336
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, an efficient meshless method named mixed radial point interpolation meshless method supplemented by a new (mixed) basis function is proposed. The proposed basis function is the multiplication of two conventional basis functions and possesses some extraordinary properties in comparison with conventional ones. In order to investigate the improvements of this basis function, an important type of electromagnetic problems, i.e. parallel plate waveguide with an internal discontinuity is analyzed. It is seen that the mixed basis function possesses better precision and convergence rate with respect to other basis functions.
引用
收藏
页码:786 / 797
页数:12
相关论文
共 50 条
  • [1] The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics
    Kaufmann, Thomas
    Fumeaux, Christophe
    Vahldieck, Ruediger
    [J]. 2008 IEEE MTT-S International Microwave Symposium Digest, Vols 1-4, 2008, : 61 - 64
  • [2] A point interpolation meshless method based on radial basis functions
    Wang, JG
    Liu, GR
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (11) : 1623 - 1648
  • [3] Recent developments of the meshless radial point interpolation method for time-domain electromagnetics
    Kaufmann, T.
    Yu, Y.
    Engstroem, C.
    Chen, Z.
    Fumeaux, C.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 468 - 489
  • [4] On the Numerical Dispersion of the Radial Point Interpolation Meshless Method
    Yang, Shunchuan
    Chen, Zhizhang
    Yu, Yiqiang
    Ponomarenko, Sergey
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (10) : 653 - 655
  • [5] Pseudospectral Meshless Radial Point Hermit Interpolation Versus Pseudospectral Meshless Radial Point Interpolation
    Shivanian, Elyas
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (07)
  • [6] First- and Second-Order Meshless Radial Point Interpolation Methods in Electromagnetics
    Shaterian, Zahra
    Kaufmann, Thomas
    Fumeaux, Christophe
    [J]. 2014 1ST AUSTRALIAN MICROWAVE SYMPOSIUM (AMS), 2014, : 11 - 12
  • [7] On the Choice of Basis Functions for the Meshless Radial Point Interpolation Method with Small Local Support Domains
    Shaterian, Zahra
    Kaufmann, Thomas
    Fumeaux, Christophe
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 288 - 290
  • [8] The Radial Point Interpolation Meshless Method for a Moderately Thick Plate
    Hu Weijun
    Xia Ping
    [J]. INFORMATION AND BUSINESS INTELLIGENCE, PT I, 2012, 267 : 628 - +
  • [9] Numerical Dispersion Analysis of Radial Point Interpolation Meshless Method
    Zhang, Xiaoyan
    Ye, Peng
    Chen, Zhizhang
    Yu, Yiqiang
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 717 - 719
  • [10] Formulation of pseudospectral meshless radial point Hermit interpolation for the Motz problem and comparison to pseudospectral meshless radial point interpolation
    Shivanian, Elyas
    [J]. MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2020, 16 (01) : 1 - 20