The Radial Point Interpolation Meshless Method for a Moderately Thick Plate

被引:0
|
作者
Hu Weijun [1 ]
Xia Ping [2 ]
机构
[1] Shaoyang Univ, Dept Mech Engn, Shaoyang 422000, Peoples R China
[2] Hunan Inst Engn, Dept Mech Engn, Xiangtan 411101, Hunan, Peoples R China
关键词
radial point interpolation; moderatelythick plate; bending problem; meshless method the Galerkin global weak-form;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bending problem of moderately thick plate are analyzed by the radial point interpolation meshless method in this paper. The global Galerkin weak-form equation of isotropic moderately thick plate is established based on Mindlin plate theory and the minimum total potential energy principle. The shape functions constructed using the radial point interpolation method possesses Kronecker delta function property, so the essential boundary conditions can be easily imposed. Numerical examples show that the presented method has such advantages as high efficiency, good accuracy and easy implentation. The shear locking can be avoided in the bending analyzing of thin plates.
引用
收藏
页码:628 / +
页数:2
相关论文
共 50 条
  • [1] The static and free vibration analysis of a nonhomogeneous moderately thick plate using the meshless local radial point interpolation method
    Xia, P.
    Long, S. Y.
    Cui, H. X.
    Li, G. Y.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (06) : 770 - 777
  • [2] Bending analysis of moderately thick plates on elastic foundation by meshless local radial point interpolation method
    Xia Ping
    Long Shu-yao
    Hu Wei-jun
    [J]. ROCK AND SOIL MECHANICS, 2010, 31 (02) : 656 - 660
  • [3] On the Numerical Dispersion of the Radial Point Interpolation Meshless Method
    Yang, Shunchuan
    Chen, Zhizhang
    Yu, Yiqiang
    Ponomarenko, Sergey
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (10) : 653 - 655
  • [4] Pseudospectral Meshless Radial Point Hermit Interpolation Versus Pseudospectral Meshless Radial Point Interpolation
    Shivanian, Elyas
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (07)
  • [5] Shear Locking Analysis of Plate Bending by Using Meshless Local Radial Point Interpolation Method
    Xia Ping
    Wei Kexiang
    [J]. PROGRESS IN STRUCTURE, PTS 1-4, 2012, 166-169 : 2867 - 2870
  • [6] Numerical Dispersion Analysis of Radial Point Interpolation Meshless Method
    Zhang, Xiaoyan
    Ye, Peng
    Chen, Zhizhang
    Yu, Yiqiang
    [J]. 2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2017, : 717 - 719
  • [7] A point interpolation meshless method based on radial basis functions
    Wang, JG
    Liu, GR
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (11) : 1623 - 1648
  • [8] Formulation of pseudospectral meshless radial point Hermit interpolation for the Motz problem and comparison to pseudospectral meshless radial point interpolation
    Shivanian, Elyas
    [J]. MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2020, 16 (01) : 1 - 20
  • [9] The local radial point interpolation meshless method for solving Maxwell equations
    Dehghan, Mehdi
    Haghjoo-Saniji, Mina
    [J]. ENGINEERING WITH COMPUTERS, 2017, 33 (04) : 897 - 918
  • [10] The Meshless Radial Point Interpolation Method for Time-Domain Electromagnetics
    Kaufmann, Thomas
    Fumeaux, Christophe
    Vahldieck, Ruediger
    [J]. 2008 IEEE MTT-S International Microwave Symposium Digest, Vols 1-4, 2008, : 61 - 64