Robust multivariate L1 principal component analysis and dimensionality reduction

被引:8
|
作者
Gao, Junbin [1 ]
Kwan, Paul W. [2 ]
Guo, Yi [2 ]
机构
[1] Charles Sturt Univ, Sch Comp Sci, Bathurst, NSW 2795, Australia
[2] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
基金
中国国家自然科学基金;
关键词
Robust L1 PCA; EM algorithm; Dimensionality reduction;
D O I
10.1016/j.neucom.2008.01.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Further to our recent work on the robust L1 PCA we introduce a new version of robust PCA model based on the so-called multivariate Laplace distribution (called L1 distribution) proposed in Eltoft et al. [2006. On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300-303]. Due to the heavy tail and high component dependency characteristics of the multivariate L1 distribution, the proposed model is expected to be more robust against data outliers and fitting component dependency. Additionally. we demonstrate how a variational approximation scheme enables effective inference of key parameters in the probabilistic multivariate L1-PCA model. By doing so, a tractable Bayesian inference can be achieved based on the variational EM-type algorithm. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1242 / 1249
页数:8
相关论文
共 50 条
  • [1] Reweighted l1 Algorithm for Robust Principal Component Analysis
    Hoai Minh Le
    Vo Xuanthanh
    [J]. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 133 - 142
  • [2] On principal component analysis in L1
    Li, BB
    Martin, EB
    Morris, AJ
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 40 (03) : 471 - 474
  • [3] Robust Q-mode principal component analysis in L1
    Choulakian, V
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 37 (02) : 135 - 150
  • [4] Robust L1 principal component analysis and its Bayesian variational inference
    Gao, Junbin
    [J]. NEURAL COMPUTATION, 2008, 20 (02) : 555 - 572
  • [5] Dimensionality reduction and visualization in principal component analysis
    Ivosev, Gordana
    Burton, Lyle
    Bonner, Ron
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (13) : 4933 - 4944
  • [6] A fast algorithm for the computation of robust Q-mode principal component analysis in L1
    Almhana, J
    Choulakian, V
    [J]. 16TH ANNUAL INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2002, : 127 - 132
  • [7] Dimensionality Reduction with Sparse Locality for Principal Component Analysis
    Li, Pei Heng
    Lee, Taeho
    Youn, Hee Yong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [8] Adaptive Dimensionality Reduction for Local Principal Component Analysis
    Migenda, Nico
    Schenck, Wolfram
    [J]. 2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 1575 - 1582
  • [9] Joint Principal Component and Discriminant Analysis for Dimensionality Reduction
    Zhao, Xiaowei
    Guo, Jun
    Nie, Feiping
    Chen, Ling
    Li, Zhihui
    Zhang, Huaxiang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) : 433 - 444
  • [10] Mixture robust L1 probabilistic principal component regression and soft sensor application
    Zhu, Pengbo
    Yang, Xianqiang
    Zhang, Hang
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (08): : 1741 - 1756