Robust multivariate L1 principal component analysis and dimensionality reduction

被引:8
|
作者
Gao, Junbin [1 ]
Kwan, Paul W. [2 ]
Guo, Yi [2 ]
机构
[1] Charles Sturt Univ, Sch Comp Sci, Bathurst, NSW 2795, Australia
[2] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
基金
中国国家自然科学基金;
关键词
Robust L1 PCA; EM algorithm; Dimensionality reduction;
D O I
10.1016/j.neucom.2008.01.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Further to our recent work on the robust L1 PCA we introduce a new version of robust PCA model based on the so-called multivariate Laplace distribution (called L1 distribution) proposed in Eltoft et al. [2006. On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300-303]. Due to the heavy tail and high component dependency characteristics of the multivariate L1 distribution, the proposed model is expected to be more robust against data outliers and fitting component dependency. Additionally. we demonstrate how a variational approximation scheme enables effective inference of key parameters in the probabilistic multivariate L1-PCA model. By doing so, a tractable Bayesian inference can be achieved based on the variational EM-type algorithm. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1242 / 1249
页数:8
相关论文
共 50 条
  • [41] PRINCIPAL COMPONENT ANALYSIS OF MULTIVARIATE IMAGES
    GELADI, P
    ISAKSSON, H
    LINDQVIST, L
    WOLD, S
    ESBENSEN, K
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1989, 5 (03) : 209 - 220
  • [42] Principal component analysis for multivariate extremes
    Drees, Holger
    Sabourin, Anne
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 908 - 943
  • [43] A Pareto Corner Search Evolutionary Algorithm and Principal Component Analysis for Objective Dimensionality Reduction
    Xuan Hung Nguyen
    Lam Thu Bui
    Cao Truong Tran
    PROCEEDINGS OF 2019 11TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2019), 2019, : 25 - 30
  • [44] Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
    Sidhu, Gagan S.
    Asgarian, Nasimeh
    Greiner, Russell
    Brown, Matthew R. G.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2012, 6
  • [45] Spectral transformation based on nonlinear principal component analysis for dimensionality reduction of hyperspectral images
    Licciardi, Giorgio
    Chanussot, Jocelyn
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 375 - 390
  • [46] Dimensionality reduction of RKHS model using Reduced Kernel Principal Component Analysis (RKPCA)
    Ilyes, Elaissi
    Okba, Taouali
    Hassani, Messaoud
    18TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2010, : 951 - 956
  • [47] Energy Efficient Medical Data Dimensionality Reduction using Optimized Principal Component Analysis
    Sophia S.G.
    Thanammal K.K.
    Sujatha S.S.
    EAI Endorsed Transactions on Energy Web, 2022, 9 (37) : 1 - 7
  • [48] Noise Reduction and Brain Mapping based Robust Principal Component Analysis
    Turnip, Arjon
    2015 IEEE 12th International Conference on Networking, Sensing and Control (ICNSC), 2015, : 550 - 553
  • [49] Multivariate L1 mean
    Dodge, Y
    Rousson, V
    METRIKA, 1999, 49 (02) : 127 - 134
  • [50] Multivariate L1 mean
    Yadolah Dodge
    Valentin Rousson
    Metrika, 1999, 49 : 127 - 134