Robust Q-mode principal component analysis in L1

被引:20
|
作者
Choulakian, V [1 ]
机构
[1] Univ Moncton, Fac Sci, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
principal components; L-1-norm; Q-analysis; R-analysis; outliers; A-estimator of scale; extended simple structure; projection pursuit;
D O I
10.1016/S0167-9473(01)00005-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose principal component analysis (PCA) of a data set based on the L-1-norm. We distinguish between Q-mode and R-mode analyses. The Q-mode L-1 principal components are sequentially calculated by an enumeration procedure. We show that the Q-mode L-1-norm PCA is a constrained version of R-mode L-2-norm. PCA. Two generalizations are proposed, robustification and extension of Thurston's simple structure. Robustification is achieved by replacing the L-2-norm. by an efficient robust A-estimator of scale based on Tukey's biweight function. Extended simple structure is used to discard redundant variables. Examples are provided. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 150
页数:16
相关论文
共 50 条
  • [1] A fast algorithm for the computation of robust Q-mode principal component analysis in L1
    Almhana, J
    Choulakian, V
    [J]. 16TH ANNUAL INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2002, : 127 - 132
  • [2] Reweighted l1 Algorithm for Robust Principal Component Analysis
    Hoai Minh Le
    Vo Xuanthanh
    [J]. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 133 - 142
  • [3] Q-mode versus R-mode Principal Component Analysis for Linear Discriminant Analysis (LDA)
    Lee, Loong Chuen
    Liong, Choong-Yeun
    Jemain, Abdul Aziz
    [J]. 3RD ISM INTERNATIONAL STATISTICAL CONFERENCE 2016 (ISM III): BRINGING PROFESSIONALISM AND PRESTIGE IN STATISTICS, 2017, 1842
  • [4] On principal component analysis in L1
    Li, BB
    Martin, EB
    Morris, AJ
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 40 (03) : 471 - 474
  • [5] Robust multivariate L1 principal component analysis and dimensionality reduction
    Gao, Junbin
    Kwan, Paul W.
    Guo, Yi
    [J]. NEUROCOMPUTING, 2009, 72 (4-6) : 1242 - 1249
  • [6] Robust L1 principal component analysis and its Bayesian variational inference
    Gao, Junbin
    [J]. NEURAL COMPUTATION, 2008, 20 (02) : 555 - 572
  • [7] Mixture robust L1 probabilistic principal component regression and soft sensor application
    Zhu, Pengbo
    Yang, Xianqiang
    Zhang, Hang
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (08): : 1741 - 1756
  • [8] Transposition invariant principal component analysis in L1 for long tailed data
    Choulakian, V
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 71 (01) : 23 - 31
  • [9] Robust Principal Component Analysis Based On L1-2 Metric
    Zhang, Fanlong
    Yang, Zhangjing
    Wan, Minghua
    Yang, Guowei
    [J]. PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 394 - 398
  • [10] USE OF Q-MODE FACTOR-ANALYSIS FOR REGIONALIZATION
    TOPCHIYEV, AG
    [J]. SOVIET GEOGRAPHY REVIEW AND TRANSLATION, 1976, 17 (02): : 94 - 100