On principal component analysis in L1

被引:13
|
作者
Li, BB [1 ]
Martin, EB [1 ]
Morris, AJ [1 ]
机构
[1] Newcastle Univ, Ctr Proc Analyt & Control Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
L-1; norm; principal component analysis;
D O I
10.1016/S0167-9473(02)00076-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Four formulations of principal component analysis in L, norm were developed by Galpin and Hawkins (Comput. Statist, Data Anal. 5 (1987) 305). QPmax, QPmin, LPmax, and LPmin. Choulakian (Comput. Statist. Data Anal. 37 (2001)135) claimed that of the four formulations, only QPmax produces a non-trivial solution. The objective is to present counter-examples that illustrate that the QPmin and LPmin formulations also give non-trivial solutions that may be unique except for the sign. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:471 / 474
页数:4
相关论文
共 50 条
  • [1] Reweighted l1 Algorithm for Robust Principal Component Analysis
    Hoai Minh Le
    Vo Xuanthanh
    [J]. ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 133 - 142
  • [2] Robust multivariate L1 principal component analysis and dimensionality reduction
    Gao, Junbin
    Kwan, Paul W.
    Guo, Yi
    [J]. NEUROCOMPUTING, 2009, 72 (4-6) : 1242 - 1249
  • [3] Robust Q-mode principal component analysis in L1
    Choulakian, V
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 37 (02) : 135 - 150
  • [4] Transposition invariant principal component analysis in L1 for long tailed data
    Choulakian, V
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 71 (01) : 23 - 31
  • [5] Robust L1 principal component analysis and its Bayesian variational inference
    Gao, Junbin
    [J]. NEURAL COMPUTATION, 2008, 20 (02) : 555 - 572
  • [6] A fast algorithm for the computation of robust Q-mode principal component analysis in L1
    Almhana, J
    Choulakian, V
    [J]. 16TH ANNUAL INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2002, : 127 - 132
  • [7] Detecting Anomaly in Chemical Sensors via L1 Kernel-Based Principal Component Analysis
    Pan, Hongyi
    Badawi, Diaa
    Bassi, Ishaan
    Ozev, Sule
    Cetin, Ahmet Enis
    [J]. IEEE SENSORS LETTERS, 2022, 6 (10)
  • [8] AN INCREMENTAL PRINCIPAL COMPONENT PURSUIT ALGORITHM VIA PROJECTIONS ONTO THE l1 BALL
    Rodriguez, Paul
    Wohlberg, Brendt
    [J]. PROCEEDINGS OF THE 2017 IEEE XXIV INTERNATIONAL CONFERENCE ON ELECTRONICS, ELECTRICAL ENGINEERING AND COMPUTING (INTERCON), 2017,
  • [9] Linear time Principal Component Pursuit and its extensions using l1 filtering
    Liu, Risheng
    Lin, Zhouchen
    Su, Zhixun
    Gao, Junbin
    [J]. NEUROCOMPUTING, 2014, 142 : 529 - 541
  • [10] Mixture robust L1 probabilistic principal component regression and soft sensor application
    Zhu, Pengbo
    Yang, Xianqiang
    Zhang, Hang
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (08): : 1741 - 1756