The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions

被引:11
|
作者
Colorado, Eduardo [1 ,2 ]
Ortega, Alejandro [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Avda Univ 30, Leganes 28911, Madrid, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,ICMAT,CSIC, C Nicolas Cabrera 15, Madrid 28049, Spain
关键词
Fractional Laplacian; Mixed boundary conditions; Critical points; Critical problems; Semilinear problems; ELLIPTIC-EQUATIONS; INEQUALITIES; DIFFUSION; BEHAVIOR; WINDOWS;
D O I
10.1016/j.jmaa.2019.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the existence of solutions to the critical Brezis-Nirenberg problem when one deals with the spectral fractional Laplace operator and mixed Dirichlet-Neumann boundary conditions, i.e., {(-Delta)(s)u = lambda u+u(2:-1), u > 0 in Omega, u = 0 on Sigma D; partial derivative u/partial derivative v = 0 on Sigma(N), where Omega C R-N is a regular bounded domain, 1/2 < s < 1, 2(s)(*); is the critical fractional Sobolev exponent, 0 <= lambda epsilon R, v is the outwards normal to partial derivative Omega, Sigma(D), Sigma(N) are smooth (N - 1)-dimensional submanifolds of partial derivative Omega such that Sigma(D) U Sigma(N) = partial derivative Omega , Sigma(D) boolean AND Sigma(N) = 0, and ED fl EAr = F is a smooth (N- 2)-dimensional submanifold of 812. (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:1002 / 1025
页数:24
相关论文
共 50 条