The Laplacian with mixed Dirichlet-Neumann boundary conditions on Weyl chambers

被引:3
|
作者
Stempak, Krzysztof [1 ]
机构
[1] Wroclaw Univ Technol, Wydzial Matemat, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
Root system; Finite reflection group; Weyl chamber; eta-heat kernel and semigroup; eta-Poisson kernel and semigroup; Mixed Neumann-Dirichlet initial-boundary value problem;
D O I
10.1016/j.jde.2022.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W be a finite reflection group associated with a root system R in R-d. Let C+ denote a positive Weyl chamber distinguished by a choice of R+, a set of positive roots. We investigate realizations in L-2(C+) of the Laplacian on C+, subject to mixed Dirichlet-Neumann boundary conditions imposed on the facets of C. These conditions are determined by a homomorphism eta is an element of Hom(W, (Z) over cap (2)), where (Z) over cap (2) = {1, -1} with multiplication. The essential part of the paper contains thorough analysis of the corresponding eta-heat kernels together with proof of their positivity on C+. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:348 / 370
页数:23
相关论文
共 50 条
  • [1] The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions
    Colorado, Eduardo
    Ortega, Alejandro
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) : 1002 - 1025
  • [2] NONLINEAR ELLIPTIC EQUATIONS INVOLVING THE p-LAPLACIAN WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Bonanno, Gabriele
    D'Agui, Giuseppina
    Sciammetta, Angela
    [J]. OPUSCULA MATHEMATICA, 2019, 39 (02) : 159 - 174
  • [3] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [4] On domain monotonicity for the principal eigenvalue of the Laplacian with a mixed Dirichlet-Neumann boundary condition
    Pinsky, RG
    [J]. Geometry, Spectral Theory, Groups, and Dynamics, 2005, 387 : 245 - 252
  • [5] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    [J]. Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [6] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [7] Spectral problems with mixed Dirichlet-Neumann boundary conditions: Isospectrality and beyond
    Jakobson, Dmitry
    Levitin, Michael
    Nadirashvili, Nikolai
    Polterovich, Losif
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) : 141 - 155
  • [8] Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Li, Yuanyuan
    Ruf, Bernhard
    Guo, Qianqiao
    Niu, Pengcheng
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 374 - 397
  • [9] Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications
    Abatangelo, L.
    Felli, V
    Lena, C.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [10] SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS
    Godoy, Tomas
    [J]. OPUSCULA MATHEMATICA, 2023, 43 (01) : 19 - 46