SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS

被引:4
|
作者
Carmona, Jose [1 ]
Colorado, Eduardo [2 ]
Leonori, Tommaso [3 ]
Ortega, Alejandro [2 ]
机构
[1] Univ Almeria, Dept Matemat, Ctra Sacramento S-N, Almeria 04120, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
[3] Univ Roma Sapienza, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 10, I-00161 Rome, Italy
关键词
fractional Laplacian; mixed boundary conditions; concave-convex problem; CONCAVE; MULTIPLICITY; LAPLACIAN; EQUATIONS;
D O I
10.1515/fca-2020-0061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear elliptic boundary value problem defined on a smooth bounded domain involving the fractional Laplace operator and a concave-convex term, together with mixed Dirichlet-Neumann boundary conditions.
引用
收藏
页码:1208 / 1239
页数:32
相关论文
共 50 条
  • [1] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [2] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [3] SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS
    Godoy, Tomas
    OPUSCULA MATHEMATICA, 2023, 43 (01) : 19 - 46
  • [4] Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 521 - 539
  • [5] Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Li, Yuanyuan
    Ruf, Bernhard
    Guo, Qianqiao
    Niu, Pengcheng
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 374 - 397
  • [6] Spectral problems with mixed Dirichlet-Neumann boundary conditions: Isospectrality and beyond
    Jakobson, Dmitry
    Levitin, Michael
    Nadirashvili, Nikolai
    Polterovich, Losif
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) : 141 - 155
  • [7] Elliptic equations involving supercritical Sobolev growth with mixed Dirichlet-Neumann boundary conditions
    de Assis, Heitor R.
    Faria, Luiz F. O.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (05) : 713 - 728
  • [8] POSITIVE SOLUTIONS FOR CRITICAL QUASILINEAR ELLIPTIC EQUATIONS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    丁凌
    唐春雷
    Acta Mathematica Scientia, 2013, 33 (02) : 443 - 470
  • [9] POSITIVE SOLUTIONS FOR CRITICAL QUASILINEAR ELLIPTIC EQUATIONS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Ding, Ling
    Tang, Chunlei
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 443 - 470
  • [10] The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions
    Colorado, Eduardo
    Ortega, Alejandro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) : 1002 - 1025