The Brezis-Nirenberg problem for the fractional Laplacian with mixed Dirichlet-Neumann boundary conditions

被引:11
|
作者
Colorado, Eduardo [1 ,2 ]
Ortega, Alejandro [1 ]
机构
[1] Univ Carlos III Madrid, Dept Matemat, Avda Univ 30, Leganes 28911, Madrid, Spain
[2] UCM, UC3M, UAM, Inst Ciencias Matemat,ICMAT,CSIC, C Nicolas Cabrera 15, Madrid 28049, Spain
关键词
Fractional Laplacian; Mixed boundary conditions; Critical points; Critical problems; Semilinear problems; ELLIPTIC-EQUATIONS; INEQUALITIES; DIFFUSION; BEHAVIOR; WINDOWS;
D O I
10.1016/j.jmaa.2019.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the existence of solutions to the critical Brezis-Nirenberg problem when one deals with the spectral fractional Laplace operator and mixed Dirichlet-Neumann boundary conditions, i.e., {(-Delta)(s)u = lambda u+u(2:-1), u > 0 in Omega, u = 0 on Sigma D; partial derivative u/partial derivative v = 0 on Sigma(N), where Omega C R-N is a regular bounded domain, 1/2 < s < 1, 2(s)(*); is the critical fractional Sobolev exponent, 0 <= lambda epsilon R, v is the outwards normal to partial derivative Omega, Sigma(D), Sigma(N) are smooth (N - 1)-dimensional submanifolds of partial derivative Omega such that Sigma(D) U Sigma(N) = partial derivative Omega , Sigma(D) boolean AND Sigma(N) = 0, and ED fl EAr = F is a smooth (N- 2)-dimensional submanifold of 812. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1002 / 1025
页数:24
相关论文
共 50 条
  • [21] INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN
    Li, Lin
    Sun, Jijiang
    Tersian, Stepan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1146 - 1164
  • [22] NONLINEAR ELLIPTIC EQUATIONS INVOLVING THE p-LAPLACIAN WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Bonanno, Gabriele
    D'Agui, Giuseppina
    Sciammetta, Angela
    OPUSCULA MATHEMATICA, 2019, 39 (02) : 159 - 174
  • [23] Effect of the Domain Geometry on the Solutions to Fractional Brezis-Nirenberg Problem
    Tian, Qiaoyu
    Xu, Yonglin
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [24] The Brezis-Nirenberg problem for nonlocal systems
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Squassina, Marco
    Zhang, Chengxiang
    ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (01) : 85 - 103
  • [25] The Brezis–Nirenberg problem for the fractional p-Laplacian
    Sunra Mosconi
    Kanishka Perera
    Marco Squassina
    Yang Yang
    Calculus of Variations and Partial Differential Equations, 2016, 55
  • [26] A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES
    Carriao, Paulo Cesar
    Lehrer, Raquel
    Miyagaki, Olimpio Hiroshi
    Vicente, Andre
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [27] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [28] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [29] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [30] The fractional Brezis-Nirenberg problems on lower dimensions
    Guo, Yuxia
    Li, Benniao
    Pistoia, Angela
    Yan, Shusen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 : 284 - 331