On the rate of convergence of two generalized Bernstein type operators

被引:1
|
作者
Lian, Bo-yong [1 ]
Cai, Qing-bo [2 ]
机构
[1] Yang En Univ, Dept Math, Quanzhou 362014, Peoples R China
[2] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernstein operators; modulus of smoothness; rate of convergence; bounded variation; BLENDING TYPE APPROXIMATION; BEZIER VARIANT; POLYNOMIALS;
D O I
10.1007/s11766-020-3610-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the Bezier variant of two new families of generalized Bernstein type operators. We establish a direct approximation by means of the Ditzian-Totik modulus of smoothness and a global approximation theorem in terms of second order modulus of continuity. By means of construction of suitable functions and the method of Bojanic and Cheng, we give the rate of convergence for absolutely continuous functions having a derivative equivalent to a bounded variation function.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 50 条
  • [31] Convergence of Iterates of α-Bernstein Type Operators via Fixed Point of Generalized JS']JS-Contraction Type Mappings
    Mahloul, Nora
    Ramoul, Hichem
    Abbas, Mujahid
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (05) : 580 - 598
  • [32] Convergence analysis of modified Bernstein-Kantorovich type operators
    Senapati, Abhishek
    Kumar, Ajay
    Som, Tanmoy
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3749 - 3764
  • [33] Convergence of rational Bernstein operators
    Render, Hermann
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1076 - 1089
  • [34] Convergence properties of newα-Bernstein-Kantorovich type operators
    Kumar, Ajay
    Senapati, Abhishek
    Som, Tanmoy
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [35] ON THE PROPERTY OF MONOTONIC CONVERGENCE FOR MULTIVARIATE BERNSTEIN-TYPE OPERATORS
    ADELL, JA
    DELACAL, J
    SANMIGUEL, M
    JOURNAL OF APPROXIMATION THEORY, 1995, 80 (01) : 132 - 137
  • [36] Blending Type Approximation by GBS Operators of Generalized Bernstein–Durrmeyer Type
    Arun Kajla
    Dan Miclăuş
    Results in Mathematics, 2018, 73
  • [37] BLENDING TYPE APPROXIMATION BY GENERALIZED BERNSTEIN-DURRMEYER TYPE OPERATORS
    Kajla, Arun
    Acar, Tuncer
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 319 - 336
  • [38] THE CONVERGENCE RATE OF MULTI-BERNSTEIN-DURRMEYER OPERATORS WITH JACOBI WEIGHTS
    Xuan Peicai Wang Jianli You Gongqiang (Shaoxiang College of Arts and Sciences
    ApproximationTheoryandItsApplications, 2002, (02) : 90 - 101
  • [39] Generalized blending type Bernstein operators based on the shape parameter λ
    Halil Gezer
    Hüseyin Aktuğlu
    Erdem Baytunç
    Mehmet Salih Atamert
    Journal of Inequalities and Applications, 2022
  • [40] Approximation Properties of Generalized λ-Bernstein-Stancu-Type Operators
    Cai, Qing-Bo
    Torun, Gulten
    Dinlemez Kantar, Ulku
    JOURNAL OF MATHEMATICS, 2021, 2021