On the rate of convergence of two generalized Bernstein type operators

被引:1
|
作者
Lian, Bo-yong [1 ]
Cai, Qing-bo [2 ]
机构
[1] Yang En Univ, Dept Math, Quanzhou 362014, Peoples R China
[2] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernstein operators; modulus of smoothness; rate of convergence; bounded variation; BLENDING TYPE APPROXIMATION; BEZIER VARIANT; POLYNOMIALS;
D O I
10.1007/s11766-020-3610-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the Bezier variant of two new families of generalized Bernstein type operators. We establish a direct approximation by means of the Ditzian-Totik modulus of smoothness and a global approximation theorem in terms of second order modulus of continuity. By means of construction of suitable functions and the method of Bojanic and Cheng, we give the rate of convergence for absolutely continuous functions having a derivative equivalent to a bounded variation function.
引用
收藏
页码:321 / 331
页数:11
相关论文
共 50 条
  • [41] Convergence of generalized Bernstein polynomials
    Il'inskii, A
    Ostrovska, S
    JOURNAL OF APPROXIMATION THEORY, 2002, 116 (01) : 100 - 112
  • [42] Approximation Properties of Generalized λ-Bernstein-Kantorovich Type Operators
    Kumar, Ajay
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 505 - 520
  • [43] Generalized blending type Bernstein operators based on the shape parameter λ
    Gezer, Halil
    Aktuglu, Huseyin
    Baytunc, Erdem
    Atamert, Mehmet Salih
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [44] Approximation Degree of Bivariate Generalized λ-Bernstein - Kantorovich Type Operators
    Agrawal, Purshottam Narain
    Baxhaku, Behar
    Singh, Sompal
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (12) : 1484 - 1509
  • [45] Approximation of Generalized Bernstein Operators
    Xiru Yang
    Chungou Zhang
    Yingdian Ma
    AnalysisinTheoryandApplications, 2014, 30 (02) : 205 - 213
  • [46] Optimality of generalized Bernstein operators
    Aldaz, J. M.
    Render, H.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (07) : 1407 - 1416
  • [47] On the Convergence of a Family of Chlodowsky Type Bernstein-Stancu-Schurer Operators
    Shu, Lian-Ta
    Zhou, Guorong
    Cai, Qing-Bo
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [48] Blending Type Approximation by GBS Operators of Generalized Bernstein-Durrmeyer Type
    Kajla, Arun
    Miclaus, Dan
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [49] Two families of Bernstein-Durrmeyer type operators
    Cardenas-Morales, Daniel
    Gupta, Vijay
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 342 - 353
  • [50] On Convergence of Certain Nonlinear Bernstein Operators
    Karsli, Harun
    Tiryaki, Ismail U.
    Altin, H. Erhan
    FILOMAT, 2016, 30 (01) : 141 - 155