ZnSnN2: A New Earth-Abundant Element Semiconductor for Solar Cells

被引:0
|
作者
Feldberg, N. [1 ]
Keen, B. [1 ]
Aldous, J. D. [1 ]
Scanlon, D. O. [2 ]
Stampe, P. A. [3 ]
Kennedy, R. J. [3 ]
Reeves, R. J. [4 ]
Veal, T. D. [5 ]
Durbin, S. M. [1 ,6 ]
机构
[1] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[2] UCL, Kathleen Lonsdale Mat Chem, London WC1H0AJ, England
[3] Florida A&M Univ, Dept Phys, Tallahassee, FL 32307 USA
[4] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand
[5] Univ Liverpool, Stephenson Inst Renewable Energy, Dept Phys, Liverpool, Merseyside, England
[6] Univ Buffalo, Dept Elect Engn, Buffalo, NY 14228 USA
来源
2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2012年
基金
英国工程与自然科学研究理事会;
关键词
II-IV-V-2; ZnSnN2; earth abundant element; photovoltaics; molecular beam epitaxy; ZNGEN2;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Zn-IV-N-2 semiconductor family represents a potential earth abundant element alternative for PV and lighting applications, with a predicted band gap range of similar to 0.6 to similar to 5 eV. While the Ge and Si containing members of the family have been successfully synthesized, little is known about the lower band gap energy members, in particular ZnSnN2. Here, we report the growth of this compound using a plasma-assisted molecular beam epitaxy technique, and compare experimental optical and structural properties to density functional theory predictions.
引用
收藏
页码:2524 / 2527
页数:4
相关论文
共 50 条
  • [41] Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis
    Lu, Yen-Chu
    West, Julian G.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
  • [42] Room-temperature synthesis of earth-abundant semiconductor ZnSiN2 on amorphous carbon
    Coelho-Junior, Horacio
    Silva, Bruno G.
    Labre, Cilene
    Loreto, Renan P.
    Sommer, Rubem L.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] Nano-scale compositional analysis of surfaces and interfaces in earth-abundant kesterite solar cells
    Kasra Sardashti
    Dennis Paul
    Chuck Hitzman
    John Hammond
    Richard Haight
    Andrew C. Kummel
    Journal of Materials Research, 2016, 31 : 3473 - 3481
  • [44] Room-temperature synthesis of earth-abundant semiconductor ZnSiN2 on amorphous carbon
    Horácio Coelho-Júnior
    Bruno G. Silva
    Cilene Labre
    Renan P. Loreto
    Rubem L. Sommer
    Scientific Reports, 11
  • [45] Solar energy conversion and electrocatalysis using earth-abundant pyrite nanomaterials
    Jin, Song
    Caban-Acevedo, Miguel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [46] Theoretical analysis of earth-abundant solar cell based on green absorber CuFeO2
    D. Prasad
    G. Anitha
    L. Megalan Leo
    Atul Kumar
    Optical and Quantum Electronics, 2023, 55
  • [47] Theoretical analysis of earth-abundant solar cell based on green absorber CuFeO2
    Prasad, D.
    Anitha, G.
    Leo, L. Megalan
    Kumar, Atul
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (14)
  • [48] Identifying and Comparing Efficiency-Loss Mechanisms in Earth-Abundant Thin-Film Solar Cells
    Brandt, Riley E.
    Lloyd, Michael
    Lee, Yun S.
    Siah, Sin Cheng
    Buonassisi, Tonio
    2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2013, : 846 - 848
  • [49] Earth-Abundant Tin Sulfide-Based Photocathodes for Solar Hydrogen Production
    Cheng, Wei
    Singh, Nirala
    Elliott, Will
    Lee, Joun
    Rassoolkhani, Alan
    Jin, Xuejun
    McFarland, Eric W.
    Mubeen, Syed
    ADVANCED SCIENCE, 2018, 5 (01):
  • [50] Solar energy conversion and hydrogen evolution catalysis using earth-abundant nanomaterials
    Jin, Song
    Faber, Matthew S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247