ZnSnN2: A New Earth-Abundant Element Semiconductor for Solar Cells

被引:0
|
作者
Feldberg, N. [1 ]
Keen, B. [1 ]
Aldous, J. D. [1 ]
Scanlon, D. O. [2 ]
Stampe, P. A. [3 ]
Kennedy, R. J. [3 ]
Reeves, R. J. [4 ]
Veal, T. D. [5 ]
Durbin, S. M. [1 ,6 ]
机构
[1] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[2] UCL, Kathleen Lonsdale Mat Chem, London WC1H0AJ, England
[3] Florida A&M Univ, Dept Phys, Tallahassee, FL 32307 USA
[4] Univ Canterbury, Dept Phys & Astron, Christchurch, New Zealand
[5] Univ Liverpool, Stephenson Inst Renewable Energy, Dept Phys, Liverpool, Merseyside, England
[6] Univ Buffalo, Dept Elect Engn, Buffalo, NY 14228 USA
来源
2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2012年
基金
英国工程与自然科学研究理事会;
关键词
II-IV-V-2; ZnSnN2; earth abundant element; photovoltaics; molecular beam epitaxy; ZNGEN2;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Zn-IV-N-2 semiconductor family represents a potential earth abundant element alternative for PV and lighting applications, with a predicted band gap range of similar to 0.6 to similar to 5 eV. While the Ge and Si containing members of the family have been successfully synthesized, little is known about the lower band gap energy members, in particular ZnSnN2. Here, we report the growth of this compound using a plasma-assisted molecular beam epitaxy technique, and compare experimental optical and structural properties to density functional theory predictions.
引用
收藏
页码:2524 / 2527
页数:4
相关论文
共 50 条
  • [21] Photoelectrochemical solar energy conversion using new earth-abundant electrocatalysts and semiconductors
    Jin, Song
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [22] New Earth-abundant Materials for Large-scale Solar Fuels Generation
    Prabhakar, Rajiv Ramanujam
    Cui, Wei
    Tilley, S. David
    CHIMIA, 2018, 72 (05) : 333 - 337
  • [23] Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells
    Punya, Atchara
    Lambrecht, Walter R. L.
    PHYSICAL REVIEW B, 2013, 88 (07)
  • [24] Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials
    Reiss, Peter
    Carriere, Marie
    Lincheneau, Christophe
    Vaure, Louis
    Tamang, Sudarsan
    CHEMICAL REVIEWS, 2016, 116 (18) : 10731 - 10819
  • [25] Earth-abundant non-toxic perovskite nanocrystals for solution processed solar cells
    Aina, Sergio
    Villacampa, Belen
    Bernechea, Maria
    MATERIALS ADVANCES, 2021, 2 (13): : 4140 - 4151
  • [26] Solar energy conversion and electrocatalysis using earth-abundant nanomaterials
    Jin, Song
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [27] Emerging Earth-abundant materials for scalable solar water splitting
    Septina, Wilman
    Tilley, S. David
    CURRENT OPINION IN ELECTROCHEMISTRY, 2017, 2 (01) : 120 - 127
  • [28] Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSel
    Ganose, Alex M.
    Matsumoto, Saya
    Buckeridge, John
    Scanlon, David O.
    CHEMISTRY OF MATERIALS, 2018, 30 (11) : 3827 - 3835
  • [29] Theoretical and Experimental Study of Earth-Abundant Solar Cell Materials
    Yan, Yanfa
    Yin, W. -J.
    Shi, T.
    Hong, F.
    Ge, J.
    Yue, Y.
    Ke, W.
    Zhao, D.
    Cimaroli, A.
    2015 22nd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2015, : 57 - 60
  • [30] Scalability in solar energy conversion: The incorporation of earth-abundant materials in dye-sensitized solar cells
    McCusker, James K.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242