Convolution bialgebra of a Lie groupoid and transversal
被引:2
|
作者:
论文数: 引用数:
h-index:
机构:
Kalisnik, J.
[1
,2
]
Mrcun, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Univ Ljubljana, Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
Mrcun, J.
[1
,2
]
机构:
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
For a Lie groupoid W over a smooth manifold M we construct the adjoint action of the etale Lie groupoid W# of germs of local bisections of W on the Lie algebroid g of W. With this action, we form the associated convolution C-c(infinity)(M)/R-bialgebra C-c(infinity)(W-#, g). We represent this C-c(infinity)(M)/R-bialgebra in the algebra of transversal distributions on W. This construction extends the Cartier-Gabriel decomposition of the Hopf algebra of distributions with finite support on a Lie group. (C) 2022 Elsevier B.V. All rights reserved.
机构:
College of Mathematics and Information Science,Shandong Institute of Business and TechnologyCollege of Mathematics and Information Science,Shandong Institute of Business and Technology
SONG Guang'Ai
SU YuCai
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Tongji UniversityCollege of Mathematics and Information Science,Shandong Institute of Business and Technology