Convolution bialgebra of a Lie groupoid and transversal

被引:2
|
作者
Kalisnik, J. [1 ,2 ]
Mrcun, J. [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Lie groupoid; Lie algebroid; Convolution algebra; Universal enveloping algebra; Transversal distribution; ETALE GROUPOIDS; HOPF ALGEBROIDS;
D O I
10.1016/j.geomphys.2022.104642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Lie groupoid W over a smooth manifold M we construct the adjoint action of the etale Lie groupoid W# of germs of local bisections of W on the Lie algebroid g of W. With this action, we form the associated convolution C-c(infinity)(M)/R-bialgebra C-c(infinity)(W-#, g). We represent this C-c(infinity)(M)/R-bialgebra in the algebra of transversal distributions on W. This construction extends the Cartier-Gabriel decomposition of the Hopf algebra of distributions with finite support on a Lie group. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条