Convolution bialgebra of a Lie groupoid and transversal

被引:2
|
作者
Kalisnik, J. [1 ,2 ]
Mrcun, J. [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Lie groupoid; Lie algebroid; Convolution algebra; Universal enveloping algebra; Transversal distribution; ETALE GROUPOIDS; HOPF ALGEBROIDS;
D O I
10.1016/j.geomphys.2022.104642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Lie groupoid W over a smooth manifold M we construct the adjoint action of the etale Lie groupoid W# of germs of local bisections of W on the Lie algebroid g of W. With this action, we form the associated convolution C-c(infinity)(M)/R-bialgebra C-c(infinity)(W-#, g). We represent this C-c(infinity)(M)/R-bialgebra in the algebra of transversal distributions on W. This construction extends the Cartier-Gabriel decomposition of the Hopf algebra of distributions with finite support on a Lie group. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Lie bialgebra structure of multivariate linearly recursive sequences
    Wang, SH
    CHINESE SCIENCE BULLETIN, 1996, 41 (04): : 271 - 275
  • [42] On Some Lie Bialgebra Structures on Polynomial Algebras and their Quantization
    S. M. Khoroshkin
    I. I. Pop
    M. E. Samsonov
    A. A. Stolin
    V. N. Tolstoy
    Communications in Mathematical Physics, 2008, 282 : 625 - 662
  • [43] Lie groupoid C*-algebras and Weyl quantization
    Landsman, NP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (02) : 367 - 381
  • [44] Locally Convex Bialgebroid of an Action Lie Groupoid
    Kalisnik, J.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [45] Lie Groupoid C*-Algebras and Weyl Quantization
    N. P. Landsman
    Communications in Mathematical Physics, 1999, 206 : 367 - 381
  • [46] Locally Convex Bialgebroid of an Action Lie Groupoid
    J. Kališnik
    Mediterranean Journal of Mathematics, 2024, 21
  • [47] Classical limit of Lie groupoid C*-algebras
    Ramazan, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07): : 603 - 606
  • [48] LIE BIALGEBRA STRUCTURES ON THE LIE ALGEBRA sI2(Cq[x, y])
    Xu, Ying
    Li, Junbo
    Wang, Wei
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) : 4751 - 4763
  • [49] Lie Bialgebra Structures on Not-Finitely Graded Lie Algebras B(Γ) of Block Type
    Wang, Hao
    Xu, Ying
    Yue, Xiaoqing
    JOURNAL OF LIE THEORY, 2015, 25 (03) : 775 - 786
  • [50] Lie bialgebra structures on the deformative Schrodinger-Virasoro algebras
    Fa, Huanxia
    Li, Junbo
    Zheng, Yelong
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)