Quantization of the Lie Bialgebra of String Topology

被引:7
|
作者
Chen, Xiaojun [1 ]
Eshmatov, Farkhod [1 ]
Gan, Wee Liang [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
HOMOLOGY;
D O I
10.1007/s00220-010-1139-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincar, duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [1] Quantization of the Lie Bialgebra of String Topology
    Xiaojun Chen
    Farkhod Eshmatov
    Wee Liang Gan
    Communications in Mathematical Physics, 2011, 301 : 37 - 53
  • [2] On some lie bialgebra structures on polynomial algebras and their quantization
    Khoroshkin, S. M.
    Pop, I. I.
    Samsonov, M. E.
    Stolin, A. A.
    Tolstoy, V. N.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (03) : 625 - 662
  • [3] On Some Lie Bialgebra Structures on Polynomial Algebras and their Quantization
    S. M. Khoroshkin
    I. I. Pop
    M. E. Samsonov
    A. A. Stolin
    V. N. Tolstoy
    Communications in Mathematical Physics, 2008, 282 : 625 - 662
  • [4] Lie super-bialgebra and quantization of the super Virasoro algebra
    Yuan, Lamei
    He, Caixia
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
  • [5] String topology for Lie groups
    Hepworth, Richard A.
    JOURNAL OF TOPOLOGY, 2010, 3 (02) : 424 - 442
  • [6] ON THE STRING TOPOLOGY COPRODUCT FOR LIE GROUPS
    Stegemeyer, Maximilian
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2022, 24 (02) : 327 - 345
  • [7] Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
    Yang, Yu
    Wang, Xingtao
    AXIOMS, 2025, 14 (01)
  • [8] On the string topology category of compact Lie groups
    Shamir, Shoham
    ADVANCES IN MATHEMATICS, 2014, 261 : 122 - 153
  • [9] Bialgebra of quasi-Lie and Lie loops
    Bangoura, Momo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (04) : 593 - 616
  • [10] Lie Bialgebra Structures on Lie Algebras of Block Type
    Cheng, Yongsheng
    Song, Guang'ai
    Xin, Bin
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 677 - 690