Quantization of the Lie Bialgebra of String Topology

被引:7
|
作者
Chen, Xiaojun [1 ]
Eshmatov, Farkhod [1 ]
Gan, Wee Liang [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
HOMOLOGY;
D O I
10.1007/s00220-010-1139-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincar, duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [21] Lie Bialgebra Structure of Derivation Lie Algebra over Quantum Torus
    Xu, Shuoyang
    Yue, Xiaoqing
    FRONTIERS OF MATHEMATICS, 2024, 19 (01): : 143 - 160
  • [22] Lie Bialgebra Structure of Derivation Lie Algebra over Quantum Torus
    Shuoyang Xu
    Xiaoqing Yue
    Frontiers of Mathematics, 2024, 19 : 143 - 160
  • [23] Lie bialgebra structures on derivation Lie algebra over quantum tori
    Tang, Xiaomin
    Liu, Lijuan
    Xu, Jinli
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 949 - 965
  • [24] Dual Lie bialgebra structures of Poisson types
    Song Guang'Ai
    Su YuCai
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1151 - 1162
  • [25] Existence of triangular Lie bialgebra structures II
    Feldvoss, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 198 (1-3) : 151 - 163
  • [26] Dual Lie bialgebra structures of Poisson types
    Guang’Ai Song
    YuCai Su
    Science China Mathematics, 2015, 58 : 1151 - 1162
  • [27] Lie super-bialgebra structures on the Lie superalgebra of Witt type
    Yue, Xiaoqing
    Zhu, Xiaoyu
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4989 - 5003
  • [28] Lie bialgebra structures on derivation Lie algebra over quantum tori
    Xiaomin Tang
    Lijuan Liu
    Jinli Xu
    Frontiers of Mathematics in China, 2017, 12 : 949 - 965
  • [29] Lie Bialgebra Structures on the Extended Schrodinger-Virasoro Lie Algebra
    Yuan, Lamei
    Wu, Yongping
    Xu, Ying
    ALGEBRA COLLOQUIUM, 2011, 18 (04) : 709 - 720
  • [30] Some remarks on Lie bialgebra structures on simple complex Lie algebras
    Stolin, A
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) : 4289 - 4302