Quantization of the Lie Bialgebra of String Topology

被引:7
|
作者
Chen, Xiaojun [1 ]
Eshmatov, Farkhod [1 ]
Gan, Wee Liang [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
HOMOLOGY;
D O I
10.1007/s00220-010-1139-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let M be a smooth, simply-connected, closed oriented manifold, and LM the free loop space of M. Using a Poincar, duality model for M, we show that the reduced equivariant homology of LM has the structure of a Lie bialgebra, and we construct a Hopf algebra which quantizes the Lie bialgebra.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [31] Lie bialgebra structure of multivariate linearly recursive sequences
    王栓宏
    Chinese Science Bulletin, 1996, (04) : 271 - 275
  • [32] ON THE GENERAL CLASSIFICATION OF LIE BIALGEBRA STRUCTURES OVER POLYNOMIALS
    Pop, Iulia
    Yermolova-Magnusson, Julia
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) : 4461 - 4470
  • [33] Lie bialgebra structure on cyclic cohomology of Fukaya categories
    Xiaojun Chen
    Hai-Long Her
    Shanzhong Sun
    Frontiers of Mathematics in China, 2015, 10 : 1057 - 1085
  • [34] Quantum E(2) groups and Lie bialgebra structures
    Sobczyk, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (11): : 2887 - 2893
  • [35] The Lie bialgebra structure of the vector space of cyclic words
    González A.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 667 - 689
  • [36] Lie bialgebra structure on cyclic cohomology of Fukaya categories
    Chen, Xiaojun
    Her, Hai-Long
    Sun, Shanzhong
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (05) : 1057 - 1085
  • [37] Classification of the Lie bialgebra structures on the Witt and Virasoro algebras
    Ng, SH
    Taft, EJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (01) : 67 - 88
  • [38] Lie bialgebra structure of multivariate linearly recursive sequences
    Wang, SH
    CHINESE SCIENCE BULLETIN, 1996, 41 (04): : 271 - 275
  • [39] LIE BIALGEBRA STRUCTURES ON THE LIE ALGEBRA sI2(Cq[x, y])
    Xu, Ying
    Li, Junbo
    Wang, Wei
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (12) : 4751 - 4763
  • [40] Lie Bialgebra Structures on Not-Finitely Graded Lie Algebras B(Γ) of Block Type
    Wang, Hao
    Xu, Ying
    Yue, Xiaoqing
    JOURNAL OF LIE THEORY, 2015, 25 (03) : 775 - 786