Convolution bialgebra of a Lie groupoid and transversal

被引:2
|
作者
Kalisnik, J. [1 ,2 ]
Mrcun, J. [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
[2] Univ Ljubljana, Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
关键词
Lie groupoid; Lie algebroid; Convolution algebra; Universal enveloping algebra; Transversal distribution; ETALE GROUPOIDS; HOPF ALGEBROIDS;
D O I
10.1016/j.geomphys.2022.104642
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Lie groupoid W over a smooth manifold M we construct the adjoint action of the etale Lie groupoid W# of germs of local bisections of W on the Lie algebroid g of W. With this action, we form the associated convolution C-c(infinity)(M)/R-bialgebra C-c(infinity)(W-#, g). We represent this C-c(infinity)(M)/R-bialgebra in the algebra of transversal distributions on W. This construction extends the Cartier-Gabriel decomposition of the Hopf algebra of distributions with finite support on a Lie group. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Lie groupoid deformations and convolution algebras
    Kosmeijer, Bjarne
    Posthuma, Hessel
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 194
  • [2] EXTENSION OF LIE GROUPOID
    ABIB, OR
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (01): : 43 - 44
  • [3] Bialgebra of quasi-Lie and Lie loops
    Bangoura, Momo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (04) : 593 - 616
  • [4] The Lie group of bisections of a Lie groupoid
    Schmeding, Alexander
    Wockel, Christoph
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (01) : 87 - 123
  • [5] The Lie group of bisections of a Lie groupoid
    Alexander Schmeding
    Christoph Wockel
    Annals of Global Analysis and Geometry, 2015, 48 : 87 - 123
  • [6] Lie Bialgebra Structures on Lie Algebras of Block Type
    Cheng, Yongsheng
    Song, Guang'ai
    Xin, Bin
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 677 - 690
  • [7] Quantization of the Lie Bialgebra of String Topology
    Xiaojun Chen
    Farkhod Eshmatov
    Wee Liang Gan
    Communications in Mathematical Physics, 2011, 301 : 37 - 53
  • [8] THE LIE GROUPOID ANALOGUE OF A SYMPLECTIC LIE GROUP
    Pham, David N.
    ARCHIVUM MATHEMATICUM, 2021, 57 (02): : 61 - 81
  • [9] Existence of triangular Lie bialgebra structures
    Feldvoss, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 134 (01) : 1 - 14
  • [10] Lie Bialgebra Structures on the Lie Algebra £ Related to the Virasoro Algebra
    Chen, Xue
    Su, Yihong
    Zheng, Jia
    SYMMETRY-BASEL, 2023, 15 (01):